Sociology 7704: Regression Models for Categorical Data
Instructor: Natasha Sarkisian

OLS Regression Assumptions

Al. All independent variables are quantitative or dichotomous, and the dependent variable is
quantitative, continuous, and unbounded. All variables are measured without error.

A2. All independent variables have some variation in value (non-zero variance).

A3. There is no exact linear relationship between two or more independent variables (no perfect
multicollinearity).

A4. At each set of values of the independent variables, the mean of the error term is zero.

Ab5. Each independent variable is uncorrelated with the error term.

AG6. At each set of values of the independent variables, the variance of the error term is the same
(homoscedasticity).

A7. For any two observations, their error terms are not correlated (lack of autocorrelation).

A8. At each set of values of the independent variables, error term is normally distributed.

A9. The change in the expected value of the dependent variable associated with a unit increase in
an independent variable is the same regardless of the specific values of other independent
variables (additivity assumption).

A10. The change in the expected value of the dependent variable associated with a unit increase
in an independent variable is the same regardless of the specific values of this independent
variable (linearity assumption).

Al1-AT7: Gauss-Markov assumptions: If these assumptions hold, the resulting regression estimates
are BLUE (Best Linear Unbiased Estimates).

Unbiased: if we were to calculate that estimate over many samples, the mean of these estimates
would be equal to the mean of the population (i.e., on average we are on target).

Best (also known as efficient): the standard deviation of the estimate is the smallest possible (i.e.,
not only are we on target on average, but we don’t deviate too far from it).

If A8-A10 also hold, the results can be used appropriately for statistical inference (i.e.,
significance tests, confidence intervals).

OLS Regression diagnostics and remedies

1. Multivariate Normality

OLS is not very sensitive to non-normally distributed errors but the efficiency of estimators
decreases as the distribution substantially deviates from normal (especially if there are heavy
tails). Further, heavily skewed distributions are problematic as they question the validity of the
mean as a measure for central tendency and OLS relies on means. Therefore, we usually test for
nonnormality of residuals’ distribution and if it's found, attempt to use transformations to remedy
the problem.

To test normality of error terms distribution, first, we generate a variable containing residuals:

. reg agekdbrn educ born sex mapres80 age



Source | SS df MS Number of obs = 1089
————————————— Fom e F( 5, 1083) = 49.10
Model | 5760.17098 5 1152.0342 Prob > F = 0.0000
Residual | 25412.492 1083 23.4649049 R-squared = 0.1848
————————————— e Adj R-squared = 0.1810
Total | 31172.663 1088 28.6513447 Root MSE = 4.8441
agekdbrn | Coef std. Err t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
educ | .6158833 .0561099 10.98 0.000 .5057869 .7259797
born | 1.679078 .5757599 2.92 0.004 .5493468 2.808809
sex | -2.217823 .3043625 -7.29 0.000 -2.81503 -1.620616
mapres80 | .0331945 .0118728 2.80 0.005 .0098982 .0564909
age | .0582643 .0099202 5.87 0.000 .0387993 .0777293
_cons | 13.27142 1.252294 10.60 0.000 10.81422 15.72861

. predict residl, resid

(1676 missing values generated)

Next, we can use any of the tools we used above to evaluate the normality of distribution for this
variable. For example, we can construct the gnorm plot:

. gnorm residl
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In this case, residuals deviate from normal quite substantially. We could check whether
transforming the dependent variable using the transformation we identified above would help us:

. quietly reg agekdbrnrr educ born sex mapres80 age
. predict resid2, resid

(1676 missing values generated)

. gnorm resid2
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Looks much better — the residuals are essentially normally distributed although it looks like there
are a few outliers in the tails. We could further examine the outliers and influential observations;
we’ll discuss that later.

2. Linearity

We looked at bivariate plots to assess linearity during the screening phase, but bivariate plots do
not tell the whole story - we are interested in partial relationships, controlling for all other
regressors. We can try plots for such relationship using mrunning command. Let’s download that
first:

search mrunning

Keyword search
Keywords: mrunning
Search: (1) Official help files, FAQs, Examples, SJs, and STBs
Search of official help files, FAQs, Examples, SJs, and STBs
SJ-5-3 gr0017 e e e e . A multivariable scatterplot smoother
(help mrunning, running if installed) . . . . P. Royston and N. J. Cox
03/05 SJ 5(3):405--412
presents an extension to running for use in a
multivariable context

Click on gr0017 to install the program. Now we can use it:

. mrunning agekdbrn educ born sex mapres80 age
1089 observations, R-sg = 0.2768
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We can clearly see some substantial nonlinearity for educ and age; mapres80 doesn’t look quite
linear either. We can also run our regression model and examine the residuals. One way to do so

would be to plot residuals against each continuous independent variable:
.lowess residl age
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We can detect some nonlinearity in this graph. A more effective tool for detecting nonlinearity in
such multivariate context is so-called augmented component plus residual plots, usually with
lowess curve:

. acprplot age, lowess mcolor (yellow)
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In addition to these graphical tools, there are also a few tests we can run. One way to diagnose
nonlinearities is so-called omitted variables test. It searches for a pattern in residuals that could
suggest that a power transformation of one of the variables in the model is omitted. To find such
factors, it uses either the powers of the fitted values (which means, in essence, powers of the linear
combination of all regressors) or the powers of individual regressors in predicting Y. If it finds a
significant relationship, this suggests that we probably overlooked some nonlinear relationship.

. ovtest
Ramsey RESET test using powers of the fitted values of agekdbrn
Ho: model has no omitted variables
F(3, 1080) 2.74
Prob > F 0.0423



ovtest, rhs
(note: Dborn dropped due to collinearity)
(note: sex dropped due to collinearity)
(note: Dborn”3 dropped due to collinearity)
(note: Dborn”4 dropped due to collinearity)
(note: sex”3 dropped due to collinearity)
(note: sex”4 dropped due to collinearity)

Ramsey RESET test using powers of the independent variables
Ho: model has no omitted variables
F(l1, 1074) = 14.84
Prob > F = 0.0000

Looks like we might be missing some nonlinear relationships. We will, however, also explicitly
check for linearity for each independent variable. We can do so using Box-Tidwell test. First, we
need to download it:

net search boxtid
(contacting http://www.stata.com)

3 packages found (Stata Journal and STB listed first)

sgll2 1 from http://www.stata.com/stb/stb50
STB-50 sgll2 1. Nonlin. reg. models with power or exp. func. of covar. /
STB insert by / Patrick Royston, Imperial College School of Medicine, UK;
/ Gareth Ambler, Imperial College School of Medicine, UK. / Support:
proyston@rpms.ac.uk and gambler@rpms.ac.uk / After installation, see

We select this first one, sg112 1, and install it. Now use it:

boxtid reg agekdbrn educ born sex mapres80 age

Iteration 0: Deviance = 6483.522

Iteration 1: Deviance = 6470.107 (change = -13.41466)
Iteration 2: Deviance = 6469.55 (change = -.5577601)
Iteration 3: Deviance = 6468.783 (change = -.7663782)
Iteration 4: Deviance = 6468.6 (change = -.1832873)
Iteration 5: Deviance = 6468.496 (change = -.103788)
Iteration 6: Deviance = 6468.456 (change = -.0399491)
Iteration 7: Deviance = 6468.438 (change = -.0177698)
Iteration 8: Deviance = 6468.43 (change = -.0082658)
Iteration 9: Deviance = 6468.427 (change = -.0035944)
Iteration 10: Deviance = 6468.425 (change = -.0018104)
Iteration 11: Deviance = 6468.424 (change = -.0008303)

-> gen double Ieduc_ 1 = X"2.6408-2.579607814 if e (sample)

-> gen double Ieduc 2 = X"2.6408*1n(X)-.9256893949 if e (sample)
(where: X = (educ+1)/10)

-> gen double Imapr 1 = X70.4799-1.931881531 if e(sample)

-> gen double Imapr 2 = X*0.4799*1n(X)-2.650956804 if e (sample)
(where: X = mapres80/10)

-> gen double Iage 1 = X*-3.2902-.0065387933 if e (sample)

-> gen double Tage 2 = X"-3.2902*1n(X)-.009996425 if e (sample)
(where: X = age/10)

-> gen double Iborn 1 = born-1 if e(sample)

-> gen double Isex 1 = sex-1 if e(sample)

[Total iterations: 33]

Box-Tidwell regression model

Source | SS df MS Number of obs = 1089
————————————— e e F( 8, 1080) = 38.76
Model | 6953.00253 8 869.125317 Prob > F = 0.0000
Residual | 24219.6605 1080 22.4256115 R-squared = 0.2230
————————————— Fomm Adj R-squared = 0.2173



Total | 31172.663 1088 28.6513447 Root MSE = 4.7356

agekdbrn | Coef. Std. Err. t P>|t| [95% Conf. Interval]
_____________ +________________________________________________________________
Ieduc_ 1 | 1.215639 .7083273 1.72 0.086 -.174215 2.605492
Ieduc pl | .00374 .8606987 0.00 0.997 -1.685091 1.692571
Imapr 1 | 1.153845 9.01628 0.13 0.898 -16.53757 18.84525
Imapr pl | .0927861 2.600166 0.04 0.972 -5.009163 5.194736
Tage 1 | -67.26803 42.28364 -1.59 0.112 -150.2354 15.69937
Iage pl | -.4932163 53.49507 -0.01 0.993 -105.4593 104.4728
Iborn 1 | 1.380925 .5659349 2.44 0.015 .2704681 2.491381
Isex 1 | -2.017794 .298963 -6.75 0.000 -2.604408 -1.43118
_cons | 25.14711 .2955639 85.08 0.000 24.56717 25.72706
educ | .5613397 .05549 10.116 Nonlin. dev. 11.972 (P = 0.001)
pl | 2.64077 .7027411 3.758
mapres80 | .0337813 .0115436 2.926 Nonlin. dev. 0.126 (P = 0.724)
pl | .4798773 1.28955 0.372
age | .0534185 .0098828 5.405 Nonlin. dev. 39.646 (P = 0.000)
pl | -3.290191 .8046904 -4.089

Deviance: 6468.424.

Here, we interpret the last three portions of output, and more specifically the P values there.
P=0.001 for educ and P=0.000 for age suggests that there is some nonlinearity with regard to these
two variables. Mapres80 appears to be fine. With regard to remedies, the process here is the same
as we discussed earlier when talking about bivariate linearity. Once remedies are applied, it is a
good idea to retest using these multivariate screening tools.

3. Outliers, Leverage Points, and Influential Observations

A single observation that is substantially different from other observations can make a large
difference in the results of regression analysis. For this reason, unusual observations (or small
groups of unusual observations) should be identified and examined. There are three ways that an
observation can be unusual:

Outliers: In univariate context, people often refer to observations with extreme values (unusually
high or low) as outliers. But in regression models, an outlier is an observation that has unusual
value of the dependent variable given its values of the independent variables — that is, the
relationship between the dependent variable and the independent ones is different for an outlier
than for the other data points. Graphically, an outlier is far from the pattern defined by other data
points. Typically, in a regression model, an outlier has a large residual.

Leverage points: An observation with an extreme value (either very high or very low) on a single
predictor variable or on a combination of predictors is called a point with high leverage. Leverage
is a measure of how far a value of an independent variable deviates from the mean of that variable.
In the multivariate context, leverage is a measure of each observation’s distance from the
multidimensional centroid in the space formed by all the predictors. These leverage points can
have an effect on the estimates of regression coefficients.

Influential Observations: A combination of the previous two characteristics produces influential
observations. An observation is considered influential if removing the observation substantially




changes the estimates of coefficients. Observations that have just one of these two characteristics
(either an outlier or a high leverage point but not both) do not tend to be influential.

Thus, we want to identify outliers and leverage points, and especially those observations that are
both, to assess and possibly minimize their impact on our regression model. Furthermore, outliers,
even when they are not influential in terms of coefficient estimates, can unduly inflate the error
variance. Their presence may also signal that our model failed to capture some important factors
(i.e., indicate potential model specification problem).

In the multivariate context, to identify outliers, we want to find observations with high residuals;
and to identify observations with high leverage, we can use the so-called hat-values -- these
measure each observation’s distance from the multidimensional centroid in the space formed by
all the regressors. We can also use various influence statistics that help us identify influential
observations by combining information on outlierness and leverage.

To obtain these various statistics in Stata, we use predict command. Here are some values we can
obtain using predict, with the rule-of-thumb cutoff values for statistics used in outlier diagnostics:

Predict option Result Cutoff value
(n=sample size,
k=parameters)

xb xb, fitted values (linear prediction); the

default

stdp standard error of linear prediction

residuals residuals

stdr standard error of the residual

rstandard standardized residuals (residuals divided by

standard error)

rstudent studentized (jackknifed) residuals, recommended |rstudent|> 2

for outlier diagnostics (for each observation,
the residual is divided by the standard error
obtained from a model that includes a dummy
variable for that specific observation)

lev (hat) hat values, measures of leverage (diagonal Hat > (2k+2)/n

elements of hat matrix)

*dfits DFITS, influence statistic based on studentized |DFits|>2*sqrt (k/n)

residuals and hat values

*welsch Welsch Distance, a variation on dfits |[WelschD|>3*sqgrt (k)

cooksd Cook's distance, an influence statistic based CooksD >4/n

on dfits and indicating the distance between
coefficient vectors when the jth observation is
omitted
*covratio COVRATIO, a measure of the influence of the jth |CovRatio-1|>3k/n

*dfbeta (varname)

observation on the variance-covariance matrix
of the estimates

DFBETA, a measure of the influence of the jth
observation on each coefficient (the difference
between the regression coefficient when the jth
observation is included and when it is
excluded, divided by the estimated standard
error of the coefficient)

|DFBetal|> 2/sqgrt (n)

*Note: Starred statistics are only available for the estimation sample; unstarred

statistics are available both in and out of sample; type predict ...

if you want them only for the estimation sample.

if e(sample)

So we could obtain and individually examine various outlier and leverage statistics, e.g.,



.predict hats, lev
.predict resid, resid
.predict rstudent, rstudent

For instance, we can then find the observations with the highest leverage values:

sum hats if e(sample), det

Leverage
Percentiles Smallest
1% .00176 .0015777
5% .0021025 .0016196
10% .0023401 .00162 Obs 1089
25% .0030041 .0016511 Sum of Wgt. 1089
50% .0041908 Mean .0055096
Largest Std. Dev. .004043
75% .006332 .0236406
90% .010143 .0258473 Variance .0000163
95% .0155289 .0302377 Skewness 2.466179
99% .0198167 .038942 Kurtosis 11.40481
list id hats if hats>.023 & hats~=. & e(sample)
o +
| id hats |
| === mmmmmm oo !
3. | 1934 .0302377 |
10. | 112 .038942 |
17. | 1230 .0236406
2447, | 1747 .0258473 |
Fommm +

But the best way to graphically examine both leverage values and residuals at the same time is the
leverage versus the residuals squared plot (L-R plot) (you can replicate it by creating a scatterplot
of hat values and residuals squared):

.lvr2plot, mlabel (id)
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There are many observations with high leverage and residuals; we would be especially concerned
about 112, 1934, 2460, 1452 etc.



Added variable plots (avplots) is another tool we can use to identify outliers and leverage points —
in this case, we can see them in relationship to the slopes. Note that you can also obtain these plots
one by one using avplot command, e.g. avplot educ, mlabel(id)

.avplots, mlabel (id)
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Observation #2460 is the first one that looks especially suspicious - that's an outlier, a high
residual observation; same thing with 1305. Looks like these are people who had their first child
very late in life. As for high leverage observations, not too many stand out on this graph, although
#112 might be one — looks like that might be a foreign born individual with very little education
who had their first child relatively late in life.

To supplement these graphs, we can use a number of influence statistics that combine information
on outlier status and leverage -- DFITS, Welsch's D, Cook's D, COVRATIO, and DFBETASs. It is
usually a good idea to obtain a range of those to decide which cases are really problematic.

It makes sense to list the values of your dependent and independent variables for those
observations that have values of these measures above the suggested cutoffs.

E.g., we get Cook's D (based on hat values and standardized residuals):
. predict cooksd if e(sample), cooksd

Don’t forget to specify “if e(sample)” here — Cook’s D is available out of sample as well!



NOTE: if you already generated a variable with this name (e.g. cooksd) but want to reuse the
name, just use the drop command first: e.g., drop cooksd

Now we list those observations with high Cook'’s distance. The cutoff is 4/n so in this case, it's
4/1089=.00367309.

sort cooksd
list id agekdbrn educ born sex mapres80 age cooksd if cooksd>=4/1089 & cooksd~=.

o +
| id agekdbrn educ born sex mapres80 age cooksd |
| = e e e |
1031. | 1394 30 15 no female 28 33 .0036766
1032. | 63 19 19 yes female 34 64 .003683 |
1033. | 2484 37 17 yes female 52 56 .0037003 |
1034. | 1906 29 10 no male 23 39 .0037224 |
1035. | 994 38 15 yes female 33 41 .003788 |
e !
1036. | 22 19 12 no male 44 23 .0038182 |
1037. | 1402 37 12 yes male 33 42 .0038667 |
1038. | 742 36 13 yes male 28 39 .0038726 |
1039. | 366 37 17 yes male 66 44 .0041899
1040. | 2265 39 17 yes male 52 55 .004212 |
| = |
1041. | 2703 16 16 yes male 23 45 .004219
1042. | 1284 17 12 yes female 64 76 .0043403 |
1043. | 2764 35 12 yes male 23 75 .0044005 |
1044. | 1114 39 12 yes female 46 46 .0044603 |
1045. | 2653 38 12 yes male 32 43 .0044713 |
|- oo |
1046. | 322 13 16 yes female 20 38 .0044766
1047. | 352 16 9 no female 44 49 .0045471 |
1048. | 1382 39 12 yes male 35 45 .0045595 |
1049. | 1990 42 13 yes female 34 46 .0046982 |
1050. | 514 16 11 no female 40 42 .0047655 |
|- o |
1051. | 1186 30 12 no female 30 44 .0049131 |
1052. | 669 37 18 yes female 32 49 .005042 |
1053. | 1428 17 20 yes female 32 28 .0052439
1054. | 753 35 13 yes female 17 51 .0053052 |
1055. | 797 34 12 yes female 35 83 .0054951 |
|- o |
1056. | 126 38 15 yes female 28 65 .0056446
1057. | 1824 41 16 yes male 34 49 .0058367 |
1058. | 6 40 12 yes male 29 47 .0059349
1059. | 447 26 6 no female 23 55 .0060603 |
1060. | 1549 32 14 no female 66 34 .0061423 |
|- o |
1061. | 1066 32 13 no female 47 40 .0062896
1062. | 612 36 18 yes female 23 73 .0063017 |
1063. | 508 18 14 no female 64 40 .0064009
1064. | 1747 24 17 no male 86 36 .0065845 |
1065. | 1189 39 16 yes male 23 62 .0066001 |
|- —————— |
1066. | 773 37 20 yes female 28 54 .0070942 |
1067. | 2545 42 18 yes male 46 54 .0072636
1068. | 1709 38 20 yes female 35 47 .0073801 |
1069. | 541 35 18 no female 46 37 .0075467 |
1070. | 524 16 19 yes male 42 34 .0075767 |
| oo |
1071. | 430 35 18 no female 44 38 .0075794 |

1072. | 1194 21 17 no female 66 60 .0079331 |



1073. | 435 19
1074. | 1172 33
1075. | 411 21
1076. | 1952 31
1077. | 1575 34
1078. | 1934 25
1079. | 1711 27
1080. | 114 37
1081. | 2156 25
1082. | 527 22
1083. | 2362 36
1084. | 1305 44
1085. | 2415 35
1086. | 1982 37
1087. | 1452 41
1088. | 2460 50
1089. | 112 32

no male
no female
no male
no female
no male
yes male
yes male
yes female
yes male
no male
yes female
yes male
yes female
yes male
no male
yes male
no male

.0079604
.0080491
.0082472

.0083125
.0090088

.009117

.0093139
.0096068

.0104581
.0112643
.0117106
.0125958
.0133718

.0139673
.0191272
.0251248
.0434919

That's quite a few; the largest Cook’s D belong to observations 112, 2460, and 1452. All of those

stood out in graphs as well, so we want to investigate those, but first we might want to examine

other indices (e.g. DFITS, COVRATIO, etc.) as well. In the end, we want to identify and further
investigate those observations that are consistently problematic across a range of diagnostic tools.

E.g., we can combine the information on high leverage, high studentized residual, and Cook’s D:
[w=cooksd]

.scatter hats rstudent
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To identify problematic observations, let's replace circles with 1D numbers:

scatter hats student

0
Studentized residuals

[w=cooksd]

, mlabel (id)
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Another set of index measures of influence, DFBETAS, focuses on one regression coefficient at a
time. It is a normalized measure of the effect of each specific observation on a regression
coefficient, estimated by omitting each observation and comparing the resulting coefficient to the
coefficient with that observation included in the data. Positive DFBETA value indicates that an
observation increases the value of the coefficient; negative value indicates a decrease in the
coefficient due to that observation.

. dfbeta
(1676 missing values generated)

DFeduc: DFbeta (educ)
(1676 missing values generated)

DFborn: DFbeta (born)
(1676 missing values generated)

DFsex: DFbeta (sex)
(1676 missing values generated)

DFmapres80: DFbeta (mapres80)

(1676 missing values generated)

DFage: DFbeta (age)

. di 2/sgrt(1089)
.06060606

scatter DFage DFsex DFborn DFeduc DFmapres80 id, yline (.06 -.06) mlabel (id id id id
id)

12
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Observations 112 and 2460 seem to have influence on a number of coefficients; others seem to
have effects on specific coefficients, so we need to look into those that have particularly large
effects.

Remedies:

Once you detected influential data points, you need to decide what to do with them. Typically,
non-influential outliers and leverage points do not concern us much, although outliers do increase
error variance. We also want to watch out for clusters of outliers, which may suggest an omitted
variable. But influential points can have dramatic effects, and we definitely want to investigate
those. Once we find them, there is no one clear-cut solution. They should not be ignored, but
neither should they be automatically deleted. Typically, the presence of an influential point can
mean one of the following:

A. Our model is correct, the influential point can be attributed to some kind of measurement error
B. The value of the influential point is observed correctly, but our model is not correct in that it
cannot model the influential point well. Possible reasons for that: (a) The relationship between the
dependent and the independent variable is not linear in the interval of values that includes the
influential point; (b) There is another explanatory variable that can help account for that influential
point; (c) The model has heteroskedasticity problems. Unfortunately, often it is not possible to
determine which one is the case. But here’s what you can do:

1. You have to investigate what makes these data points unusual —- make sure that you examine
their values on all of the variables you use. This will help identify potential data entry errors or
might provide other clues as to why these data points are unusual. E.g., we could check #112:

. list agekdbrn educ born sex mapres80 age if id==112

13



Let’s also get averages for all variables to compare:

sum agekdbrn educ born sex mapres80 age if e (sample)

Variable | Obs Mean Std. Dev. Min Max
_____________ +________________________________________________________
agekdbrn | 1089 23.66483 5.352695 11 50
educ | 1089 13.3168 2.719027 0 20

born | 1089 1.070707 .2564527 1 2

sex | 1089 1.624426 .4844932 1 2

mapres80 | 1089 39.44077 12.95284 17 86

age | 1089 46.1258 15.06822 19 89

2. If you are considering omitting unusual data, you should investigate whether omitting these data
points changes the results of your regression model. Try omitting them one by one and compare
the coefficients with and without them: are there large changes? Let’s check what happens if we
omit #112:

reg agekdbrn educ born sex mapres80 age, beta

Source SS df MS Number of obs = 1089
————————————— to—m - F( 5, 1083) = 49.10
Model | 5760.17098 5 1152.0342 Prob > F = 0.0000
Residual | 25412.492 1083 23.4649049 R-squared = 0.1848
————————————— e Adj R-squared = 0.1810
Total | 31172.663 1088 28.6513447 Root MSE = 4.8441
agekdbrn | Coef Std. Err t P>t Beta
_____________ +________________________________________________________________
educ | .6158833 .0561099 10.98 0.000 .3128524
born | 1.679078 .5757599 2.92 0.004 .0804462
sex | -2.217823 .3043625 -7.29 0.000 -.2007438
mapres80 | .0331945 .0118728 2.80 0.005 .0803266
age | .0582643 .0099202 5.87 0.000 .1640182

_cons | 13.27142 1.252294 10.60 0.000

reg agekdbrn educ born sex mapres80 age if id~=112, beta

Source | SS df MS Number of obs = 1088
————————————— e F( 5, 1082) = 50.04
Model | 5841.74787 5 1168.34957 Prob > F 0.0000
Residual | 25261.3762 1082 23.3469281 R-squared = 0.1878
————————————— e Adj R-squared = 0.1841
Total | 31103.1241 1087 28.6137296 Root MSE 4.8319
agekdbrn | Coef. Std. Err t P>|t| Beta
_____________ +________________________________________________________________
educ | .63726 .0565958 11.26 0.000 .3214802
born | 1.515919 .5778803 2.62 0.009 .0722698
sex | -2.187693 .3038273 -7.20 0.000 -.1980863
mapres80 | .030491 .0118905 2.56 0.010 .0737543
age | .0583569 .0098953 5.90 0.000 .1644404

_cons | 13.20334 1.249428 10.57 0.000

The actual effect of that observation on the coefficients of educ, mapres80, and born are rather
pretty small; for each, beta changes by about 0.01.
Also, try omitting the most persistent influential points as a group and examine the effects. If there
are large changes in coefficients, you might use that to justify omitting a few (but only very few)
observations from the model — but you will also have to explain what is so special about these

cases.
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3. To reduce the incidence of high leverage points, consider transforming skewed variables and/or
topcoding/bottomcoding variables to bring univariate outliers closer to the rest of the distribution
(e.g. coding incomes of >$100,000 to $100,000 so that these high values do not stand out), like we
did when we discussed data screening (and if that was done at that stage, it reduces the chances
that problems emerge in multivariate context).

4. If unusual data come in clusters, you may have to introduce another variable to control for their
unusualness, or you might want to deal with them in a separate regression model.

5. Robust regression is another option when one observes substantial problems with influential
data. The Stata rreg command performs a robust regression using iteratively reweighted least
squares, i.e., assigning a weight to each observation with higher weights given to better behaved
observations, while extremely unusual data can have their weights set to zero so that they are not
included in the analysis at all.

. rreg agekdbrn educ born sex mapres80 age, gen(wt)
Robust regression Number of obs = 1089
F( 5, 1083) = 52.34
Prob > F = 0.0000
agekdbrn | Coef std. Err t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
educ | .6518023 .0539119 12.09 0.000 .5460186 .7575859
born | 1.792079 .5532063 3.24 0.001 .7066014 2.877556
sex | -2.012778 .29244 -6.88 0.000 -2.586591 -1.438965
mapres80 | .0275798 .0114078 2.42 0.016 .005196 .0499637
age | .0522715 .0095316 5.48 0.000 .033569 .070974
_cons | 12.34444 1.203239 10.26 0.000 9.983493 14.70538
. sum wt, det
Robust Regression Weight
Percentiles Smallest
1% .2138941 0
5% .5965052 .0007363
10% .7419349 .0035576 Obs 1089
25% .8782627 .0726816 Sum of Wgt. 1089
50% .9564363 Mean .9001565
Largest Std. Dev. .1513337
75% .988214 .9999998
90% .9983087 .9999999 Variance .0229019
95% .9996306 1 Skewness -2.926814
99% .9999847 1 Kurtosis 12.98754

Comparing the robust regression results with the OLS results on the previous page, we see that
even though there are a few small differences, the coefficients, standard errors, and p-values are
quite similar. Despite the minor problems with influential data that we observed while doing our
diagnostics, the robust regression analysis yielded quite similar results, suggesting that these
problems are indeed minor. If the results of OLS and robust regression were substantially
different, we would need to further investigate what problems in our OLS model caused the
difference. If it is impossible to resolve such problems, then the robust regression results should be
viewed as more trustworthy.
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4. Additivity.

First and foremost, we should always use our theory insights to consider the need for interactions.
We can have interactions between dummies (or sets of dummies), a dummy (or a set of dummies)
and a continuous variable, or two continuous variables. To avoid multicollinearity problems, you

should code your dummies 0/1 and mean-center those continuous variables that are involved in
interaction terms.

. gen sexd=sex-1
. gen bornd=born-1
(6 missing values generated)

for var age educ mapres80: sum X \ gen Xmean=X-r (mean)
-> sum age
Variable | Obs Mean Std. Dev. Min Max

age | 2751 46.28281 17.37049 18 89
-> gen agemean=age-r (mean)
(14 missing values generated)

->  sum educ
Variable | Obs Mean Std. Dev. Min Max

educ | 2753 13.36397 2.973924 0 20
-> gen educmean=educ-r (mean)
(12 missing values generated)

-> sum mapres80
Variable | Obs Mean Std. Dev. Min Max

mapres80 | 1619 40.96912 13.63189 17 86
-> gen mapres80mean=mapres80-r (mean)
(1146 missing values generated)

A user-written program “fitint” helps find statistically significant two-way interactions, so it can
be used as a diagnostic tool.

. net search fitint
Click on: fitint from http://fmwww.bc.edu/RePEc/bocode/f

fitint reg agekdbrn bornd sexd agemean educmean mapres80mean, twoway (bornd sexd
agemean educmean mapres80mean) factor (bornd sexd)

Source | SS df MS Number of obs = 1089
————————————— Fom e F( 15, 1073) = 17.65
Model | 6169.67284 15 411.311523 Prob > F = 0.0000
Residual | 25002.9902 1073 23.301948 R-squared = 0.1979
————————————— e e Adj R-squared = 0.1867
Total | 31172.663 1088 28.6513447 Root MSE = 4.8272
agekdbrn | Coef. std. Err. t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
_TIbornd 1 | 1.710533 .9779923 1.75 0.081 -.2084614 3.629527
_Isexd 1 | -2.21852 .3179507 -6.98 0.000 -2.842395 -1.594644
agemean | .0587138 .0171439 3.42 0.001 .0250744 .0923532
educmean | .4551926 .0888308 5.12 0.000 .2808908 .6294943
mapres80mean | .033156 .0203674 1.63 0.104 -.0068085 .0731205
_Ibornd 1 | (dropped)
_Isexd 1 | (dropped)
_IborXsex ~1 | .1211157 1.271076 0.10 0.924 -2.372961 2.615193
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_Ibornd 1 | (dropped)
agemean | (dropped)
_IborXagem~1 | .0048469 .0568729 0.09 0.932 -.1067477 .1164415
_Ibornd 1 | (dropped)
educmean | (dropped)
_IborXeduc~1 | =-.2922046 .210566 -1.39 0.166 -.7053724 .1209631
_Ibornd 1 | (dropped)
mapres80mean | (dropped)
_IborXmapr~1 | .0046759 .0414082 0.11 0.910 -.0765743 .0859261
_Isexd 1 | (dropped)
_IsexXagem~1 | -.0031427 .0207363 -0.15 0.880 -.043831 .0375455
_Isexd 1 | (dropped)
_IsexXeduc~1 | .391932 .1146716 3.42 0.001 .1669259 .6169381
_Isexd 1 | (dropped)

_IsexXmapr~1 | -.0005186 .024932 -0.02 0.983 -.0494397 .0484024
13 6 | -.0038885 .0038209 -1.02 0.309 -.0113858 .0036088
14 6 | .0004487 .0008266 0.54 0.587 -.0011732 .0020706
15 6 | .0033919 .0044236 0.77 0.443 -.005288 .0120717

cons | 24.98069 .2579745 96.83 0.000 24.4745 25.48688

Fitting and testing any interactions and any main effects not included
in interaction terms using the ratio of the mean square error of each
term and the residual mean square error to obtain an F ratio statistic

Model summary

Number of observations used in estimation: 1089
Regression command: regress
Dependent variable: agekdbrn
Residual MSE: 23.30
degrees of freedom: 1073
Term | Mean square F ratio dfl df2 P>F
___________________ +____________________________________________________
i.bornd*i.sexd | 0.21 0.01 1 1073 0.9241
i.bornd*agemean | 0.17 0.01 1 1073 0.9321
i.bornd*educmean | 44 .87 1.93 1 1073 0.1655
i.bornd*mapres80mean | 0.30 0.01 1 1073 0.9101
i.sexd*agemean | 0.54 0.02 1 1073 0.8796
i.sexd*educmean | 272.21 11.68 1 1073 0.0007
i.sexd*mapres80mean | 0.01 0.00 1 1073 0.9834
agemean*educmean | 24.13 1.04 1 1073 0.3091
agemean*mapres80mean | 6.87 0.29 1 1073 0.5874
educmean*mapres80mean | 13.70 0.59 1 1073 0.4434

It appears that when all twoway interactions are tested simultaneously, the only one that is
statistically significant is sex by education. We could also check each two-way interaction
separately to make sure we did not miss anything by testing all simultaneously:

for X in var bornd sexd agemean educmean mapres80mean: for Y in var bornd sexd
agemean educmean mapres8Omean: fitint reg agekdbrn bornd sexd agemean educmean
mapres80mean, twoway (Y X) factor (bornd sexd)
[output omitted]

Note that you should always include main effect variables in addition to the interaction, because
the interaction term can only be interpreted together with that main effect. Further, if you want to
explore three-way interactions, the model should also include all possible two-way interactions in
addition to main terms. For example:

gen bornsex=bornd*sexd
(6 missing values generated)
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gen borneduc=bornd*educmean
(13 missing values generated)

gen educsex=educmean*sexd

(12 missing values generated)
gen educsexborn=educmean*sexd*bornd
(13 missing values generated)

xi: reg agekdbrn bornd sexd agemean educmean mapres80mean bornsex borneduc educsex
educsexborn
Source | SS df MS Number of obs = 1089
————————————— Fom F( 9, 1079) = 29.48
Model | 6152.90509 9 683.656121 Prob > F = 0.0000
Residual | 25019.7579 1079 23.1879128 R-squared = 0.1974
————————————— e Adj R-squared = 0.1907
Total | 31172.663 1088 28.6513447 Root MSE = 4.8154
agekdbrn | Coef Std. Err t P>t | [95% Conf. Interval]
_____________ +________________________________________________________________
bornd | 1.779615 .9740461 1.83 0.068 -.131624 3.690854
sexd | -2.220267 .3134215 -7.08 0.000 -2.835252 -1.605282
agemean | .0594442 .0098793 6.02 0.000 .0400593 .078829
educmean | .4461687 .0831105 5.37 0.000 .2830922 .6092451
mapres80mean | .0324834 .0118427 2.74 0.006 .00924061 .0557208
bornsex | .0946345 1.204318 0.08 0.937 -2.268437 2.457706
borneduc | -.4745646 .2819971 -1.68 0.093 -1.027889 .0787601
educsex | .3621368 .1124932 3.22 0.001 .1414065 .5828671
educsexborn | .4750623 .3902632 1.22 0.224 -.2906985 1.240823
_cons | 25.00961 .2479526 100.86 0.000 24.52309 25.49614
_____________ +________________________________________________________________

But we’ll focus on two-way interactions for now, and in order to explore how to interpret them,
we’ll review 4 examples: (1) an interaction of two dichotomous variables; (2) an interaction of a
dummy variable and a continuous variable; (3) an interaction of a set of dummy variables and a

continuous variable; (4) an interaction of two continuous variables.

Example 1: Two dichotomous variables

reg agekdbrn educ bornd##sexd mapres80 age

Source | SS df MS Number of obs = 1089
————————————— e bt T F( 6, 1082) = 40.91
Model | 5764.17997 6 960.696662 Prob > F = 0.0000
Residual | 25408.483 1082 23.4828863 R-squared = 0.1849
————————————— e Adj R-squared = 0.1804
Total | 31172.663 1088 28.6513447 Root MSE = 4.8459
agekdbrn | Coef Std. Err t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
educ | .6165377 .0561537 10.98 0.000 .5063552 .7267202
1.bornd | 1.358118 .9670434 1.40 0.160 -.5393752 3.25561
l.sexd | -2.251548 .3152298 -7.14 0.000 -2.870079 -1.633017

|

bornd#sexd |
11 | .4964787 1.201596 0.41 0.680 -1.861244 2.854201

|
mapres80 | .0333659 .0118846 2.81 0.005 .0100464 .0566855
age | .0584314 .0099322 5.88 0.000 .0389428 .07792
_cons | 12.73045 .9671152 13.16 0.000 10.83281 14.62808

The interaction is not statistically significant, but let’s suppose it would be. Then we can first
interpret the two main effects: the foreign born men have children 1.4 years later than the native
born men, and the native born women have children 2.3 years earlier than the native born men.



To interpret the interaction term, we need to focus on one variable as our main variable and the
other will be used as a moderator. We can do it both ways.

Nativity status as the main variable:

The effect of being foreign born is 1.4 for men (i.e., the foreign born men have children 1.4 years
later than the native born men), but for women, it is 1.4+0.5=1.9 (that is, the foreign born women
have children 1.9 years later than the native born women).

Gender as the main variable:

The effect of gender is -2.3 for the native born (i.e., the native born women have children 2.3 years
earlier than the native born men), but for the foreign born, it is -2.3 +.5=-1.8 (that is, the foreign
born women have children 1.8 years earlier than the foreign born men).

The only time when we would use both main effects and an interaction is when we wanted to
compare across gender and nativity status at the same time: that is, the foreign born women have
children 0.4 of a year earlier than the native born men: 1.4-2.3+0.5=-0.4

Although it doesn’t make sense to examine an interaction of two dummy variables graphically, we
can use “adjust” command to help us interpret this interaction:

. xi: qui reg agekdbrn educ i.bornd*sexd mapres80 age
. adjust educ mapres80 age if e(sample), by (sexd bornd)
Dependent variable: agekdbrn Command: regress
Variables left as is: Ibornd 1, IborXsexd 1
Covariates set to mean: educ = 13.316804, mapres80 = 39.440773, age = 46.125805

| bornd
sexd | 0 1
__________ +_________________
0 | 24.9519 26.31
1 | 22.7004 24.555

Key: Linear Prediction

These are the predicted values of agekdbrn given average values of education, age, and mother’s
occupational prestige.

Example 2: A dummy variable and a continuous variable

. reg agekdbrn bornd##c.educmean sexd mapres80 age

Source | SS df MS Number of obs = 1089
————————————— e F( 6, 1082) = 41.17
Model | 5793.5421 6 965.590349 Prob > F = 0.0000
Residual | 25379.1209 1082 23.4557494 R-squared = 0.1859
————————————— e Adj R-squared = 0.1813
Total | 31172.663 1088 28.6513447 Root MSE = 4.8431
agekdbrn | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_________________ +________________________________________________________________
1l.bornd | 1.716336 .5764944 2.98 0.003 .585162 2.847509
educmean | .6352486 .058401 10.88 0.000 .5206565 .7498407
|
|

bornd#c.educmean
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1

sexd
mapres80
age
_cons

-.2323323

|
|
| =-2.229199
| .0334778
| .0587405
| 20.93833

.194782

.3044525
.0118729
.0099263
.7498733

-.6145255

-2.826583
.0101813
.0392636
19.46696

.1498609

-1.631814
.0567743
.0782175

22.4097

Again, no significant interaction, but for practice, we’ll interpret the results.

Education as the main variable, nativity status as the moderator:

Among the native born individuals, a one year increase in education is associated with a 0.6 of a

year increase in the age of having kids. Among the foreign born individuals, a one year increase in
education is associated with a (.63-.23)=0.4 of a year increase in the age of having kids.

Nativity status as the main variable, education as the moderator:
Among those with average education (13.4 years), the foreign born have kids 1.7 years later than

the native born. Among those with education one unit above average (14.4 years), the foreign born
have kids 1.5 years later than the native born (1.7+1*(-0.2)). Among those with education one unit
below average (12.4 years), the foreign born have kids 1.9 years later than the native born (1.7 + (-
1*(-0.2))). We could also look at those whose education is 4 years below average (9.4 years); for

them, the foreign born have kids 2.5 years later than the native born (1.7 + (-4*(-0.2))).

We could estimate this model in a different way to see separately the effects of education in the

native born and the foreign born groups; that will also allow us to see if the effect is significant in
each of the groups:

. gen educfb=edu

cmean*bornd

(13 missing values generated)

. gen educnb=edu

cmean

(12 missing values generated)
. replace educnb=0 if bornd==

(256 real change

. reg agekdbrn b
Source |
_____________ +
Model |
Residual |
+

|

s made)

ornd educfb
SS

5793.5421
25379.1209 1

df M

S

6 965.590349

educnb sexd mapres80 age

Number of obs

F(
Pr
R_
Ad
Ro

6,
ob > F
squared
j R-squared
ot MSE

1082)

1089
41.17
0.0000
0.1859
0.1813
4.8431

bornd
educfb
educnb
sexd
mapres80
age
_cons

1.716336
.4029163
.6352486
-2.229199
.0334778
.0587405
20.93833

082 23.4557494
088 28.6513447
td. Err t
.5764944 2.98
.1871522 2.15
.058401 10.88
.3044525 -7.32
.0118729 2.82
.0099263 5.92
.7498733 27.92

[95% Conf. I

.585162
.0356939
.5206565

-2.826583 -
.0101813
.0392636
19.46696

nterval]

2.847509
.7701387
.7498407
1.631814
.0567743
.0782175

22.4097

This way we can see that the effect of education is significant in both groups.
Finally, we can again examine this interaction graphically.

. adjust sexd mapres80 age if e(sample), gen(predl)
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Dependent variable: agekdbrn Command: regress
Created variable: predl
Variables left as is: bornd, educfb, educnb

Covariates set to mean: sexd = .62442607, mapres80 = 39.440773, age = 46.125805
All | xb
__________ +___________
| 23.6648
Key xb = Linear Prediction
twoway (line predl educ if bornd==0, sort color(red) legend(label(l "native born")))

(line predl educ if bornd==1, sort color(blue) legend(label (2 "foreign born"))
ytitle ("Respondent’s Age When 1lst Child Was Born"))
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highest year of school completed

Alternatively, we could split predl into two variables (or if needed more):
.separate predl, by (bornd)

native born foreign born ‘

This would generate two variables, pred10 and pred11, which we can graph:
.line predl0 predll educ, lcolor(red blue) sort

o
™

15 20

o4

15 20 25
L L
- \\

10
highest year of school completed

predl, bornd == 0 predl, bornd == 1 ‘

Example 3: A set of dummy variables and a continuous variable




reg agekdbrn bornd marital##c.educmean sexd mapres80 age

Source | SS df MS Number of obs = 1089
————————————— e F( 13, 1075) = 21.96
Model | 6540.34346 13 503.103343 Prob > F = 0.0000
Residual | 24632.3195 1075 22.9137856 R-squared = 0.2098
————————————— e Adj R-squared = 0.2003
Total | 31172.663 1088 28.6513447 Root MSE 4.7868
agekdbrn | Coef. Std. Err. t P>t [95% Conf. Interval]
___________________ +________________________________________________________________
bornd | 1.536577 .5729824 2.68 0.007 .4122865 2.660868
|
marital |
widowed | -.8946254 .626208 -1.43 0.153 -2.123354 .3341031
divorced | -.9166076 .3889825 -2.36 0.019 -1.679859 -.1533567
separated | -1.944692 .7095625 -2.74 0.006 -3.336977 -.5524077
never married | -2.55648 .5380556 -4.75 0.000 -3.612238 -1.500722
|
educmean | .6467199 .0727279 8.89 0.000 .504015 .7894247
|
marital#fc.educmean |
widowed | -.3294696 .167311 -1.97 0.049 -.6577629 -.0011764
divorced | .0213546 .151949 0.14 0.888 -.2767956 .3195049
separated | -.0935184 .2455722 -0.38 0.703 -.5753736 .3883368
never married | -.527267 .2268917 -2.32 0.020 -.9724677 -.0820662
|
sexd | -2.028997 .3066702 -6.62 0.000 -2.630737 -1.427257
mapres80 | .0292701 .0118022 2.48 0.013 .0061121 .0524282
age | .0435388 .0117499 3.71 0.000 .0204835 .0665942
_cons | 22.24782 .8245124 26.98 0.000 20.62999 23.86566

To test whether the set of interactions is jointly significant:
mat list e (b)

e(b)I[1,16]

1b. 2. 3. 4. 5.
bornd marital marital marital marital marital
at 1.5365772 0 -.8946254 -.91660762 -1.9446921 -2.5564798
lb.marital# 2.marital# 3.marital# 4 .marital# S5.marital#
educmean co.educmean c.educmean c.educmean c.educmean c.educmean
yl .64671988 0 -.32946962 .02135465 -.09351841 -.52726698

sexd mapres80 age _cons

yl -2.0289968 .02927015 .04353882 22.247823

test 2.marital#c.educmean 3.marital#c.educmean 4.marital#c.educmean
5.marital#c.educmean

.marital#c.educmean =
.marital#c.educmean
.marital#c.educmean
.marital#c.educmean =

g w N
[[I]
o o oo

)
)
)
)

S w N

(
(
(
(

F( 4, 1075) = 2.22
Prob > F = 0.0653

We cannot reject the null hypothesis, so we conclude that jointly these interaction effects are not
statistically significant (they do not add significantly to the amount of variance explained by the
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model; although it is possible that with fewer groups, the overall significance test would change).
If we were to explore these interaction terms, however, we would want to get the estimates of
separate slopes of education by marital status:

tab marital, gen (mardummy)

marital |

status | Freq Percent Cum
______________ +___________________________________
married | 1,269 45.90 45.90
widowed | 247 8.93 54.83
divorced | 445 16.09 70.92
separated | 96 3.47 74.39
never married | 708 25.01 100.00
______________ +___________________________________

Total | 2,765 100.00

for num 1/5: gen educmarX=educmean*mardummyX
-> gen educmarl=educmean*mardummyl
(12 missing values generated)
-> gen educmarZ=educmean*mardummy2
(12 missing values generated)
-> gen educmar3=educmean*mardummy3
(12 missing values generated)
-> gen educmar4=educmean*mardummy4
(12 missing values generated)
-> gen educmarbS=educmean*mardummyb5
(12 missing values generated)

reg agekdbrn bornd i.marital educmarl-educmar5 sexd mapres80 age

Source | SS df MS Number of obs = 1089
————————————— o F( 13, 1075) = 21.96
Model | 6540.34346 13 503.103343 Prob > F = 0.0000
Residual | 24632.3195 1075 22.9137856 R-squared = 0.20098
————————————— Fom Adj R-squared = 0.2003
Total | 31172.663 1088 28.6513447 Root MSE = 4.7868
agekdbrn | Coef. Sstd. Err. t P>t [95% Conf. Interval]
_______________ +________________________________________________________________
bornd | 1.536577 .5729824 2.68 0.007 .4122865 2.660868
|
marital |
widowed | -.8946254 .626208 -1.43 0.153 -2.123354 .3341031
divorced | -.9166076 .3889825 -2.36 0.019 -1.679859 -.1533567
separated | -1.944692 .7095625 -2.74 0.006 -3.336977 -.5524077
never married | -2.55648 .5380556 -4.75 0.000 -3.612238 -1.500722
[
educmarl | .6467199 .0727279 8.89 0.000 .504015 .7894247
educmar?2 | .3172503 .1522423 2.08 0.037 .0185245 .615976
educmar3 | .6680745 .1348759 4.95 0.000 .4034246 .9327244
educmar4 | .5532015 .2360602 2.34 0.019 .0900105 1.016392
educmar5 | .1194529 .2155296 0.55 0.580 -.3034536 .5423594
sexd | -2.028997 .3066702 -6.62 0.000 -2.630737 -1.427257
mapres80 | .0292701 .0118022 2.48 0.013 .0061121 .0524282
age | .0435388 .0117499 3.71 0.000 .0204835 .0665942
_cons | 22.24782 .8245124 26.98 0.000 20.62999 23.86566

It appears that education has a statistically significant effect on age of parenthood in all groups
except for the never married.
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Example 4: Two continuous variables

Both variables should be mean centered:

. reg agekdbrn bornd c.educmean##c.agemean sexd mapres80
Source | SS df MS Number of obs = 1089
————————————— e F( 6, 1082) = 41.24
Model | 5801.57307 6 966.928846 Prob > F 0.0000
Residual | 25371.0899 1082 23.4483271 R-squared = 0.1861
————————————— e Adj R-squared = 0.1816
Total | 31172.663 1088 28.6513447 Root MSE = 4.8423
agekdbrn | Coef Std. Err t P>t [95% Conf. Interval]
_____________________ +________________________________________________________________
bornd | 1.679599 .5755567 2.92 0.004 .5502651 2.808932
educmean | .6362385 .0581443 10.94 0.000 .5221503 .7503268
agemean | .054804 .0102529 5.35 0.000 .0346862 .0749219
|
c.educmean#c.agemean | -.0045353 .0034131 -1.33 0.184 -.0112324 .0021618
|
sexd | -2.232587 .3044578 -7.33 0.000 -2.829982 -1.635193
mapres80 | .0335181 .0118711 2.82 0.005 .010225 .0568111
_cons | 23.64786 .52946 44.66 0.000 22.60897 24.68674

The interaction term is not significant. But if it were, to interpret it, we would pick one variable
that’s primary and the other one will serve as the moderator variable. E.g. if education is primary:
For agemean=0 (age at its mean, 46 y.0.), the effect of education is educmean coefficient,
.6362385

For agemean=20 (age is at mean+20, i.e. 66 y.0.), the effect of education is

. di .6362385 + 20*-.0045353

5455325

For agemean=-20 (age=26 y.0.), the effect of education is

. di .6362385 - 20*-.0045353

.7269445

We can do the same thing graphically -- focus on one of the continuous variables and then graph it

at various levels of the other one. E.g., we’ll see how the effect of education varies by age:
. gen educage=educmean*agemean
(24 missing values generated)

. qui reg agekdbrn bornd educmean agemean eudcage sexd mapres80

. qui adjust bornd sexd mapres80 if e(sample), gen (pred2)

. twoway (line pred2 educ if age==30, sort color(red) legend(label(l "30 years old")))
(line pred2 educ if age==40, sort color(blue) legend(label (2 "40 years old"))) (line
pred2 educ if age==50, sort color(green) legend(label (3 "50 years old"))) (line pred2

educ if age==60, sort color(lime)
Age When 1lst Child Was Born"))

legend(label (4 "60 years old")) ytitle("Respondent’s
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Here we can see that the higher one’s age, the later they had their first child, but the effect of
education becomes a little bit smaller with age (e.g. with age, the intercept becomes larger but the
slope of education becomes smaller).We could have done it other way around — graph how
agekdbrn is related to age for educational levels of, say, educ=10, 12, 14, 16, and 20.

There is also a user-written command that allows to automatically generate such a graph for three
values — mean, mean+sd, mean-sd:

. net search sslope
Click on: sslope from http://fmwww.bc.edu/RePEc/bocode/s

sslope agekdbrn bornd educmean sexd mapres80 agemean educage, 1 (educmean agemean
educage) graph

Source | SS df MS Number of obs = 1089
————————————— e bt T F( 6, 1082) = 41.24
Model | 5801.57308 6 966.928846 Prob > F = 0.0000
Residual | 25371.0899 1082 23.4483271 R-squared = 0.1861
————————————— e Adj R-squared = 0.1816
Total | 31172.663 1088 28.6513447 Root MSE = 4.8423
agekdbrn | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
bornd | 1.679599 .5755567 2.92 0.004 .5502651 2.808932
educmean | .6362385 .0581443 10.94 0.000 .5221503 .7503268
sexd | -2.232587 .3044578 -7.33 0.000 -2.829982 -1.635193
mapres80 | .0335181 .0118711 2.82 0.005 .010225 .0568111
agemean | .054804 .0102529 5.35 0.000 .0346862 .0749219
educage | -.0045353 .0034131 -1.33 0.184 -.0112324 .0021618
_cons | 23.64786 .529406 44.66 0.000 22.60897 24.68674

agemean | Coef Std. Err t P>t
____________ +_____________________________________________________

High | .5678996 .066709 8.51 0.000

Mean | .6362385 .0581443 10.94 0.000

Low | .7045775 .0871861 8.08 0.000
____________ +_____________________________________________________
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Note that this gives us significance tests for the slope estimates at three levels of the moderator
variable. If we reverse how we list the two main effect variables in the i() option of this command,
we get:

sslope agekdbrn bornd educmean sexd mapres80 agemean educage, 1 (agemean educmean
educage) graph

educmean | Coef Std. Err. t P>t
____________ +_____________________________________________________
High | .0424724 .0154784 2.74 0.006
Mean | .054804 .0102529 5.35 0.000
Low | .0671357 .0119546 5.62 0.000
____________ +_____________________________________________________
o ]
n .
o
<
o |
(3]
Q 4
g 4
T T T T
20 0 20 40
agemean
. r's age when 1st child born ~——-—-—- educmean+1sd
----------- educmean mean —— - educmean-1sd

Finally, let’s consider a more complicated case when we have a curvilinear relationship of age
with agekdbrn and an interaction between age and education; we will right away create interaction
terms to be able to use adjust command for graphs:

. gen agemean2Z2=agemean”2

(14 missing values generated)

. gen agemean3=agemean”3

(14 missing values generated)

. gen educage2=educmean*agemean?
(24 missing values generated)
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. gen educage3=educmean*agemean3
(24 missing values generated)
reg agekdbrn bornd sexd mapres80 educmean agemean agemean?2 agemean3 educage educage?

educage3
Source | SS df MS Number of obs = 1089
————————————— Fomm e F( 10, 1078) = 35.55
Model | 7731.43912 10 773.143912 Prob > F = 0.0000
Residual | 23441.2239 1078 21.7451056 R-squared = 0.2480
————————————— o Adj R-squared = 0.2410
Total | 31172.663 1088 28.6513447 Root MSE = 4.6632
agekdbrn | Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
bornd | 1.278985 .556004 2.30 0.022 .1880122 2.369958
sexd | -2.113086 .2941837 -7.18 0.000 -2.690323 -1.535848
mapres80 | .0355671 .0114369 3.11 0.002 .0131259 .0580082
educmean | .7185734 .0759774 9.46 0.000 .569493 .8676538
agemean | -.0445573 .0182216 -2.45 0.015 -.080311 -.0088036
agemean2 | -.0064784 .0007326 -8.84 0.000 -.0079158 -.005041
agemean3 | .0002514 .0000327 7.69 0.000 .0001873 .0003155
educage | -.0001007 .005545 -0.02 0.986 -.010981 .0107796
educage2 | -.0008988 .0003225 -2.79 0.005 -.0015315 -.0002661
educage3 | .0000198 9.75e-06 2.03 0.042 6.87e-07 .000039
_cons | 24.53094 .5244201 46.78 0.000 23.50194 25.55994

Indeed, significant interactions with the squared term and the cubed term.
. qui adjust bornd sexd mapres80 if e(sample), gen (pred3)

twoway (line pred3 age if educ==12, sort color(red) legend(label(l "12 years of
education™))) (line pred3 age if educ==14, sort color(blue) legend(label (2 "14 years
of education"))) (line pred3 age if educ==16, sort color(green) legend(label (3 "16
years of education"))) (line pred3 age if educ==20, sort color(lime) legend(label (4
"20 years of education")) ytitle("Respondent’s Age When lst Child Was Born"))

o
(3]

25

20

15

T T T T T
20 40 60 80 100
age of respondent

12 years of education 14 years of education
16 years of education 20 years of education

5. Multicollinearity

Our real life concern about the multicollinearity is that independent variables are highly (but not
perfectly) correlated. Need to distinguish from perfect multicollinearity -- two or more
independent variables are linearly related — in practice, this usually happens only if we make a
mistake in including the variables; Stata will resolve this by omitting one of those variables and
will tell you it did it. It can also happen when the number of variables exceeds the number of
observations.
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Perfect multicollinearity violates regression assumptions -- no unique solution for regression
coefficients.

High, but not perfect, multicollinearity is what we most commonly deal with. High
multicollinearity does not explicitly violate the regression assumptions - it is not a problem if we
use regression only for prediction (and therefore are only interested in predicted values of Y our
model generates). But it is a problem when we want to use regression for explanation (which is
typically the case in social sciences) — in this case, we are interested in values and significance
levels of regression coefficients. High degree of multicollinearity results in imprecise estimates of
the unique effects of independent variables.

First, we can inspect the correlations among the variables; it allows us to see whether there are any
high correlations, but does not provide a direct indication of multicollinearity:

. corr educ born sex mapres80

(obs=1615)
| educ born sex mapres80
_____________ +____________________________________
educ | 1.0000
born | 0.0182 1.0000
sex | 0.0066 0.0205 1.0000
mapres80 | 0.2861 0.0169 -0.0423 1.0000

Variance Inflation Factors are a better tool to diagnose multicollinearity problems. These indicate
how much the variance of a given coefficient estimate increases because of correlations of a
certain variable with the other variables in the model. E.g. VIF of 4 means that the variance is 4

times higher than it could be, and the standard error is twice as high as it could be.
reg agekdbrn educ born sex mapres80

Source | SS df MS Number of obs = 1091
————————————— o F( 4, 1086) = 51.24
Model | 4954.03533 4 1238.50883 Prob > F = 0.0000
Residual | 26251.1232 1086 24.172305 R-squared = 0.1588
————————————— e Adj R-squared = 0.1557
Total | 31205.1586 1090 28.6285858 Root MSE = 4.9165
agekdbrn | Coef. Std. Err. t P>|t] [95% Conf. Intervall]
_____________ +________________________________________________________________
educ | .6122718 .0569422 10.75 0.000 .5005426 .724001
born | 1.360161 .5816506 2.34 0.020 .218875 2.501447
sex | -2.37973 .3075642 -7.74 0.000 -2.983218 -1.776243
mapres80 | .0243138 .0119552 2.03 0.042 .0008558 .0477718
_cons | 16.95808 1.101139 15.40 0.000 14.79748 19.11868
. vif
Variable | VIF 1/VIF
_____________ +______________________
mapres80 | 1.08 0.926124
educ | 1.08 0.926562
born | 1.00 0.998366
sex | 1.00 0.9994506
_____________ +______________________
Mean VIF | 1.04

Different researchers advocate for different cutoff points for VIF. Some say that if any one of VIF
values is larger than 4, there are some multicollinearity problems associated with that variable.

28



Others use cutoffs of 5 or even 10. In the example above, there are no problems with
multicollinearity regardless of the cutoff we pick.

In addition, the following symptoms may indicate a multicollinearity problem:
« large changes in coefficients when adding or deleting variables
« non-significant coefficients for variables that you know are theoretically important
« coefficients with signs opposite of those you expected based on theory or previous results
o large standard errors in comparison to the coefficient size
« two (or more) large coefficients with opposite signs, possibly non-significant
« all or most coefficients are not significant even though the F-test indicates the entire
regression model is significant

Solutions for multicollinearity problems:

1. See if you could create a meaningful scale from the variables that are highly correlated, and use
that scale instead of the individual variables (i.e. several variables are reconceptualized as
indicators of one underlying construct).

. sum mapres80 papres80

Variable | Obs Mean Std. Dev. Min Max
_____________ +________________________________________________________
mapres80 | 1619 40.96912 13.63189 17 86
papres80 | 2165 43.47206 12.40479 17 86

The variables have the same scales so we can add them:
. gen prestige=mapres80+papres80
(1519 missing values generated)

If the scales were different, we would first standardize each of them:

. egen papres80std = std(papres80)
(600 missing values generated)

. egen mapres80std = std(mapres80)
(1146 missing values generated)

. sum mapres80std papres80std

Variable | Obs Mean Std. Dev. Min Max
_____________ +________________________________________________________
mapres80std | 1619 4.12e-09 1 -1.758312 3.303348
papres80std | 2165 -8.26e-11 1 -2.134019 3.42835

. gen prestige2=mapres80std+papres80std
(1519 missing values generated)

. pwcorr prestige prestige2

1.0000
0.9994 1.0000

prestige
prestige?2

We can now use prestige variable in subsequent OLS regressions. We might want to report a
Chronbach’s alpha — it indicates the reliability of the scale. It varies between 0 and 1, with 1 being
perfect. Typically, alphas above .7 are considered acceptable, although some argue that those
above .5 are ok.
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. alpha mapres80 papres80
Test scale = mean(unstandardized items)

Average interitem covariance: 56.39064
Number of items in the scale: 2
Scale reliability coefficient: 0.5036

2. Consider if all variables are necessary. Try to primarily use theoretical considerations --
automated procedures such as backward or forward stepwise regression methods (available via
“sw regress” command) are potentially misleading; they capitalize on minor differences among

regressors and do not result in an optimal set of regressors. If not too many variables, examine all

possible subsets.

3. If using highly correlated variables is absolutely necessary for correct model specification, you

can use biased estimates. The idea here is that we add a small amount of bias but increase the

efficiency of the estimates for those highly correlated variables. The most common method of this

type is ridge regression (see http://members.iquest.net/~softrx/ for the Stata module).

6. Heteroscedasticity

The problem of heteroscedasticity commonly refers to non-constant error variance (that’s opposite

of homoscedasticity). We can examine this graphically as well as using formal tests. First, let's
see if error variance changes across fitted values of our dependent variable:

. qui reg agekdbrn educ born sex mapres80 age
. rviplot
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Can examine the same using a formal test:
. hettest
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of agekdbrn
chi2 (1) = 21.44
Prob > chi2 = 0.0000
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Since p<.05, we reject the null hypothesis of constant variance - the errors are heteroscedastic.
Both the graph and the test indicate that the error variance is nonconsant (note the megaphone
pattern).

Now let's search if there is any systematic relationship between error variance and individual
regressors. First, graphical examination:

. rvpplot educ
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We can see the heteroscedasticity in both graphs, but it is much more severe for age. For a dummy
variable, it is more difficult to examine it graphically:

. rvpplot sex
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Now, let's use a formal test to examine the patterns of error variance across individual regressors:

. hettest, rhs mtest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variable | chi?2 df P

_____________ +_________________________
educ | 5.87 1 0.0154 #
born | 0.00 1 0.9810 #
sex | 9.19 1 0.0024 #
mapres80 | 1.45 1 0.2279 #
age | 10.26 1 0.0014 #
_____________ +_________________________

simultaneous | 25.78 5 0.0001

# unadjusted p-values

It looks like a number of regressors are responsible for our problems.

Remedies:

1. Transformations might help — it is especially important to consider the distribution of the

dependent variable. As we discussed above, it is typically desirable, and can help avoid

heteroscedasticity as well as non-normality problems, if the dependent variable is normally
distributed. Let's examine whether the transformation we identified — reciprocal square root —

would solve our heteroscedasticity problem.

. gen agekdbrnrr=1/(sqrt (agekdbrn))
(810 missing values generated)

. reg agekdbrnrr educ born sex mapres80 age
Source | SS df MS

_____________ +______________________________

Model | .11381105 6 .018968508

Residual | .426934693 1082 .000394579

+

|

Number of obs =

F( 6, 1082)
Prob > F
R-squared

Adj R-squared
Root MSE

[95% Conf.

-.0028829
-.0117363

Interval]

-.0019597
-.0024602

Total .540745743 1088 .000497009
agekdbrnrr | Coef std. Err. t P>t
_____________ +________________________________________________________________
educ | -.0024213 .0002353 -10.29 0.000
born | -.0070982 .0023638 -3.00 0.003
sex | .0095887 .0012506 7.67 0.000

.0071349

.0120425
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mapres80 | -.0001494 .0000487 -3.07 0.002 -.000245 -.0000539
agemean | -.0003115 .0000434 -7.18 0.000 -.0003967 -.0002264
agemean?2 | 8.86e-06 2.29%9e-06 3.87 0.000 4.37e-06 .0000134
_cons | .2373519 .0046505 51.04 0.000 .228227 .2464769

. hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of agekdbrnrr

chi2 (1)
Prob > chi?2
. hettest, rhs mtest

0.35
0.5566

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance

Variable | chi2 daf o)

_____________ +_________________________
educ | 0.63 1 0.4262 #
born | 0.26 1 0.6111 #
sex | 0.29 1 0.5932 #
mapres80 | 0.73 1 0.3939 #
age | 1.71 1 0.1911 #
_____________ +_________________________

simultaneous | 3.06 5 0.6900

# unadjusted p-values

The heteroscedasticity problem has been solved. As | mentioned earlier, however, it is important
to check that we did not introduce any nonlinearities by this transformation, and overall,
transformations should be used sparsely - always consider ease of model interpretation as well.
Also, sometimes when searching for a transformation to remedy heteroscedasticity, Box-Cox
transformations can be very helpful, including the “transform both sides” (TBS) approach (see
boxcox command).

2. Sometimes, dealing with outliers, influential observations, and nonlinearities might also help
resolve heteroscedasticity problems. That is why | recommend testing with heteroscedasticity only
after you’ve dealt with other problem.

3. Heteroscedasticity can also be a sign that some important factor is omitted, so you might want
to rethink your model specification.

4. If nothing else works, we can obtain robust variance estimates using robust option in regress
command (note that this is different from robust regression estimated by rreg!). These variance
estimates do not rely on distributional assumptions and are therefore not sensitive to
heteroscedasticity:

. reg agekdbrn educ born sex mapres80 age, robust

Linear regression Number of obs = 1089
F( 5, 1083) = 47.74
Prob > F = 0.0000
R-squared = 0.1848
Root MSE = 4.8441
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educ
born

sex
mapres80
age
_cons

Robust

Std. Err.

.6158833
1.679078
-2.217823
.0331945
.0582643
13.27142

.0640298
.5756992
.3143631
.0122934
.0088246
1.239779

.4902467
.54946061
-2.834653
.009073
.0409491
10.83877

.7415199
2.80869
-1.600993
.0573161
.0755795
15.70406
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