Sociology 7704: Regression Models for Categorical Data
Instructor: Natasha Sarkisian

Binary Logit: Introduction, Measures of Fit, and Diagnostics

Binary models deal with binary (0/1, yes/no) dependent variables. OLS is inappropriate for this
kind of dependent variable because we would violate numerous OLS assumptions (e.g., that the
dependent variable is quantitative, continuous, and unbounded, or that the error terms should be
homoscedastic and normally distributed).

Two main types of binary regression models are used most often — logit and probit. The two types
differ in terms of the assumed variance of the error term, and with regard to the resulting curves,
the probit curve approaches 1 and -1 more quickly than the logit curve, but in practice their results
are usually very similar, and the choice between the two is mainly the matter of taste and discipline
conventions. We’ll mostly focus on logit models because logit has better interpretation than probit-
- logistic regression can be interpreted as modeling log odds, also known as logits:

Pi .
log(l_plu]:u +B= X

Solving-this equation back to get back to probabilities, we would get p = e*®/(1+e*®).

You could also use the log likelihood value from estimating both models or other measures of fit
such as BIC or AIC (we will discuss them soon) to decide between logit or probit, but again,
typically people just run one of them.

Binary logit and probit models as well as other models we’ll discuss this semester are estimated
using maximum likelihood estimation techniques — numerical, iterative techniques that search for a
set of parameters with the highest level of the likelihood function (likelihood function tells us how
likely it is that we would observe the data in hand for each set of parameters, and in fact what we
maximize is the log of this likelihood function). This process is a trial and error process. Logit or
probit output includes information on iterations — those iterations are the steps in that search
process. Sometimes, with complicated models, the computer cannot find that maximum — then we
get convergence problems. But this never happens with binary logit or probit models.

To run logit or probit models in Stata, the dependent variable has to be coded 0/1 -- it cannot be 1
and 2, or anything else. Let’s generate a 0/1 variable:

. codebook grass

type: numeric (byte)

label: grass

range: [1,2] units: 1

unique values: 2 missing .: 1914/2765
tabulation: Freq. Numeric Label

306 1 legal
545 2 not legal
1914

. gen marijuana=(grass==1) 1if grass~=.
(1914 missing values generated)



. tab marijuana, miss
marijuana | Freq. Percent Cum
____________ +___________________________________
0 | 545 19.71 19.71
1| 306 11.07 30.78
\ 1,914 69.22 100.00
____________ +___________________________________
Total | 2,765 100.00
logit marijuana sex educ age childs
Iteration O: log likelihood = -552.0232
Iteration 1: log likelihood = -525.24385
Iteration 2: log likelihood = -524.84887
Iteration 3: log likelihood = -524.84843
Logistic regression Number of obs 845
LR chi2 (4) = 54.35
Prob > chi2 = 0.0000
Log likelihood = -524.84843 Pseudo R2 0.0492
marijuana | Coef Std. Err z P>|z| [95% Conf. Intervall]
_____________ +________________________________________________________________
sex | -.34799 .1494796 -2.33 0.020 -.6409647 -.0550152
educ | .0401891 .025553 1.57 0.116 -.009894 .0902722
age | -.0183109 .0049147 -3.73 0.000 -.0279436 -.0086782
childs | -.1696747 .0536737 -3.16 0.002 -.2748733 -.0644762
_cons | .5412516 .4595609 1.18 0.239 -.3594713 1.441974

Interpretation: Women are less likely than men to support legalization of marijuana. The effect of
education is not statistically significant. Those who are older and have more kids are less likely to
support legalization. Divorced people are more likely than the married to support legalization.

Same with probit:

. probit marijuana

sex educ age childs

Iteration O: log likelihood = -552.0232
Iteration 1: log likelihood = -525.34877
Iteration 2: log likelihood = -525.21781
Iteration 3: log likelihood = -525.2178
Probit regression Number of obs = 845
LR chi2 (4) = 53.61
Prob > chi?2 = 0.0000
Log likelihood = -525.2178 Pseudo R2 0.0486
marijuana | Coef Std. Err z P>|z| [95% Conf. Intervall]
_____________ +________________________________________________________________
sex | -.2101429 .0910856 -2.31 0.021 -.3886673 -.0316184
educ | .0229968 .0151532 1.52 0.129 -.006703 .0526965
age | -.0111514 .0029499 -3.78 0.000 -.0169331 -.0053696
childs | -.0984716 .0314167 -3.13 0.002 -.1600472 -.036896
_cons | .3374219 .2782445 1.21 0.225 -.2079273 .8827711

In the probit model, residuals are assumed to be normally distributed, with a mean of zero and a
variance of °>. However, while in OLS, we can get an actual unbiased estimate of ¢?, in probit (and
logit), o® is not identified — in fact we can only get estimates of ratios of coefficients to error
variance (B/c) but not independent estimates of each. That is, we know the effect of gender on
one’s views on marijuana legalization relative to the remaining (unexplained) dispersion of views
on marijuana legalization on the population. To deal with that, in probit, we always make o = 1. In
logit, the problem of model identification is the same, but the variance of residuals is fixed, also by
convention, to «%/3. And the distribution of residuals is assumed to be binomial rather than normal.



Hypothesis testing in logit models

In logit models, like in OLS models, we might need to test hypotheses about coefficients being
jointly zero, or to compare if coefficients are equal to each other; once again, we can use test
command:

logit marijuana sex age educ childs i.marital

Iteration O: log likelihood = -552.0232
Iteration 1: log likelihood = -515.19453
Iteration 2: log likelihood = -514.62744
Iteration 3: log likelihood = -514.62716
Iteration 4: log likelihood = -514.62716
Logistic regression Number of obs = 845
LR chi2 (8) = 74.79
Prob > chi2 = 0.0000
Log likelihood = -514.62716 Pseudo R2 = 0.0677
marijuana | Coef. Std. Err. z P>|z| [95% Conf. Intervall]
_______________ +________________________________________________________________
sex | -.3620539 .1532607 -2.36 0.018 -.6624394 -.0616684
age | -.0177167 .0056026 -3.16 0.002 -.0286977 -.0067357
educ | .041343 .0263959 1.57 0.117 -.0103919 .0930779
childs | -.1614819 .0581657 -2.78 0.005 -.2754846 -.0474793
|
marital |
widowed | .0118099 .3568915 0.03 0.974 -.6876845 .7113043
divorced | .9025573 .2053011 4.40 0.000 .5001746 1.30494
separated | .0300665 .4239309 0.07 0.943 -.8008229 .8609558
never married | .2853992 .208832 1.37 0.172 -.123904 .6947024
|
cons | .2573784 .5195598 0.50 0.620 -.7609401 1.275697

test 2.marital 3.marital 4.marital S5.marital

(1) [marijuanal2.marital = 0
(2) [marijuanal]3.marital = 0
( 3) [marijuanal4.marital = 0
( 4) [marijuanal]S5.marital = 0

chi2 ( 4) = 20.55
Prob > chi2 0.0004

When examining whether variables can be omitted as a group, we can also store our estimates and
use likelihood ratio test:

est store full

logit marijuana sex age educ childs

Iteration O: log likelihood = -552.0232

Iteration 1: log likelihood = -525.10107

Iteration 2: log likelihood = -524.84844

Iteration 3: log likelihood = -524.84843

Logistic regression Number of obs = 845
LR chi2 (4) = 54.35
Prob > chi2 = 0.0000

Log likelihood = -524.84843 Pseudo R2 = 0.0492



marijuana Coef. Std. Err. z P>|z| [95% Conf. Interval]

|
_____________ +________________________________________________________________
sex | -.34799 .1494797 -2.33 0.020 -.6409648 -.0550151
age | -.0183109 .0049147 -3.73 0.000 -.0279436 -.0086782
educ | .0401891 .0255531 1.57 0.116 -.009894 .0902722
childs | -.1696747 .0536738 -3.16 0.002 -.2748733 -.064476
_cons | .5412517 .4595611 1.18 0.239 -.3594716 1.441975
. lrtest . full
Likelihood-ratio test LR chi2 (4) = 20.44
(Assumption: . nested in full) Prob > chi2 = 0.0004

Typically, these two approaches produce very similar results.

Goodness of fit

While in OLS we primarily rely on R?and adjusted R? to assess model fit, there are many
alternative ways to assess fit for a logit model.

. qui logit marijuana sex educ age childs
. estat gof

Logistic model for marijuana, goodness-of-fit test
number of observations = 845
number of covariate patterns = 748
Pearson chi2 (743) = 748.27
Prob > chi2 = 0.4389

The high p-value indicates that model fits well (there is no significant discrepancy between
observed and predicted frequencies). But: this is a chi-square test that compares observed and
predicted outcomes in cells defined by covariate patterns — all possible combinations of
independent variables. In this case, there are 770 covariate patterns, so it 770 cells for chi-square
test, and therefore very few cases per cell. Not a good situation for a chi-square test.

Hosmer and Lemeshow suggested an alternative measure that solves the problem of too many
covariate patterns. Rather than compare the observed and predicted frequencies in each covariate
pattern, they divide the data into ten cells by sorting it according to the predicted probabilities and
breaking it into deciles (i.e. the 10% of observations with lowest predicted probabilities form the
first group, then next 10% the next group, etc.). This measure of goodness of fit is usually
preferred over the Pearson chi-square. Here’s how we obtain it:

. estat gof, group(l0)
Logistic model for marijuana, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)
number of observations = 845

number of groups = 10
Hosmer-Lemeshow chi2 (8) = 10.55
Prob > chi2 = 0.2287

Again, the model appears to fit well. If it were not, we could rely on various diagnostics (discussed
below) to improve model fit.

Other measures of fit can be obtained using fitstat. But first, we need to install it, along with other
commands written by Scott Long, the author of our textbook:



. net search spost
[output omitted]

We need to install spostl3 ado from http://www.indiana.edu/~jslsoc/stata

Now let’s obtain fit statistics for our last model:

. fitstat, save

| logit
_________________________ +_____________
Log-likelihood |
Model | -524.848
Intercept-only | -552.023
_________________________ +_____________
Chi-square |
Deviance (df=840) | 1049.697
LR (df=4) | 54.350
p-value | 0.000
_________________________ +_____________
R2 |
McFadden | 0.049
McFadden (adjusted) | 0.040
McKelvey & Zavoina | 0.090
Cox-Snell/ML | 0.062
Cragg-Uhler/Nagelkerke | 0.085
Efron | 0.065
Tjur's D | 0.063
Count | 0.204
Count (adjusted) | -1.212
_________________________ +_____________
IcC |
AIC | 1059.697
AIC divided by N | 1.254
BIC (df=5) | 1083.394
_________________________ +_____________
Variance of |
e | 3.290
y-star | 3.615

See pp. 120-130 of Long and Freese for details on these measures of fit. McFadden’s R? is what’s
commonly reported as Pseudo-R? for logit, although that tends to be fairly low.

Log likelihood value or deviance (-2LL) are also frequently reported. Examining the ratio of
Deviance/df to see how far it is from 1.0 gives us an idea of model fit (here:
1049.697/840=1.2496393).

In addition to such absolute measures of fit, we are often interested in relative measures of fit that
we use to select among two or more models--e.g., to decide whether to keep or omit a group of
variables. We did that using test and Irtest commands above (to test joint statistical significance of a
group of variables), but an alternative to that would involve comparing other measures of model fit
(Irtest does that comparison by relying on log likelihoods as a measure of model fit). For this
purpose, a very useful measure is BIC — based on the differences in BIC between models, we can
select a model with a better fit more reliably than based on a difference in Pseudo-R2 or based on
test and Irtest command results; BIC also allows us to compare non-nested models to each other
(nested models are such that model 1 includes predictors A, B, and C, and model 2 includes
predictors B and C — model 2 is nested in model 1; non-nested models are such that model 1
includes predictors A, B, and C, and model 2 includes predicts B, C, and D).



Here’s how we compare model fit using fitstat. We already saved the fitstat results of the previous
model. Let’s say, we consider adding those marital status dummies:

logit marijuana sex age educ childs i.marital

Iteration O: log likelihood = -552.0232
Iteration 1: log likelihood = -515.19453
Iteration 2: log likelihood = -514.62744
Iteration 3: log likelihood = -514.62716
Iteration 4: log likelihood = -514.62716
Logistic regression Number of obs = 845
LR chi2 (8) = 74.79
Prob > chi2 = 0.0000
Log likelihood = -514.62716 Pseudo R2 = 0.0677
marijuana | Coef Std. Err z P>|z| [95% Conf. Interval]
_______________ +________________________________________________________________
sex | -.3620539 .1532607 -2.36 0.018 -.6624394 -.0616684
age | -.0177167 .0056026 -3.16 0.002 -.0286977 -.0067357
educ | .041343 .0263959 1.57 0.117 -.0103919 .0930779
childs | -.1614819 .0581657 -2.78 0.005 -.2754846 -.0474793
|
marital |
widowed | .0118099 .3568915 0.03 0.974 -.6876845 .7113043
divorced | .9025573 .2053011 4.40 0.000 .5001746 1.30494
separated | .0300665 .4239309 0.07 0.943 -.8008229 .8609558
never married | .2853992 .208832 1.37 0.172 -.123904 .6947024
|
cons | .2573784 .5195598 0.50 0.620 -.7609401 1.275697
fitstat, dif
| Current Saved Difference
_________________________ +_______________________________________
Log-likelihood |
Model | -514.627 -524.848 10.221
Intercept-only | -552.023 -552.023 0.000
_________________________ +_______________________________________
Chi-square |
D (df=836/840/-4) | 1029.254 1049.697 -20.443
LR (df=8/4/4) | 74.792 54.350 20.443
p-value | 0.000 0.000 0.000
_________________________ +_______________________________________
R2 |
McFadden | 0.068 0.049 0.019
McFadden (adjusted) | 0.051 0.040 0.011
McKelvey & Zavoina | 0.120 0.090 0.030
Cox-Snell/ML | 0.085 0.062 0.022
Cragg-Uhler/Nagelkerke | 0.116 0.085 0.031
Efron | 0.087 0.065 0.023
Tjur's D | 0.086 0.063 0.023
Count | 0.206 0.204 0.001
Count (adjusted) | -1.208 -1.212 0.004
_________________________ +_______________________________________
Ic |
AIC | 1047.254 1059.697 -12.443
AIC divided by N | 1.239 1.254 -0.015
BIC (df=9/5/4) | 1089.908 1083.394 6.515
_________________________ +_______________________________________
|

Variance of



e | 3.290 3.290 0.000
y-star | 3.740 3.615 0.125

Note: Likelihood-ratio test assumes saved model nested in current model.

Difference of 6.515 in BIC provides strong support for saved model.

BIC suggests that adding marital status does not add enough to justify adding 4 extra variables
(which is not what our LR test showed; but BIC is usually more conservative as it penalizes you
more for adding additional parameters and losing parsimony). Of course, we could consider adding
just one dummy, divorced, and that would probably be “worth it” in terms of model fit.

Here’s how to interpret the difference in BIC (guidelines from Raftery 1995):

TABLE &
Grades of Evidence Corresponding to Values of the Bayes Factor for M,
Against M, the BIC Difference and the Posterior Probability of M,

BIC Difference Bayes Factor p(ML| D)%) Evidence
-2 1-3 50-75 Weak
2-6 3-20 75-95 Positive
6-10 20-150 95-99 Strong
=10 =150 =99 Very strong

Note that if the variable you add to the second model changes the number of cases (because of
missing data), BIC comparison won’t work. E.g., add income:

logit marijuana sex age educ childs rincom98

Logistic regression Number of obs = 599
LR chi2 (5) = 35.29

Prob > chi?2 = 0.0000

Log likelihood = -379.82272 Pseudo R2 = 0.0444
marijuana | Coef. Std. Err. Z P> z| [95% Conf. Interval]
_____________ +________________________________________________________________
sex | -.5153134 .181267 -2.84 0.004 -.8705902 -.1600366

age | -.0079214 .0072892 -1.09 0.277 -.0222079 .0063651

educ | .0849509 .0336502 2.52 0.012 .0189976 .1509041

childs | -.2199136 .0676456 -3.25 0.001 -.3524965 -.0873307
rincom98 | -.0352966 .0162986 -2.17 0.030 -.0672413 -.003352
_cons | .3036228 .5639177 0.54 0.590 -.8016357 1.408881

fitstat, dif
different Ns between saved and current model (must use -force- option)
r(999);

Because our samples are not the same, it’s problematic to compare models. Do not use force
option, however — such a comparison would not be correct. A better strategy is to limit both models

to the same sample:
logit marijuana sex age educ childs if rincom98~=.

Iteration O: log likelihood = -397.46953
Iteration 1: log likelihood = -382.29137
Iteration 2: log likelihood = -382.18666
Iteration 3: log likelihood = -382.18666
Logistic regression Number of obs = 599



LR chi2 (4)
Prob > chi2

30.57
0.0000
0.0385

Pseudo R2
P> z| [95% Conf.
0.014 -.7739073
0.183 -.0239226
0.053 -.0007257
0.001 -.3512617
0.907 -1.009894

Interval]

-.0852643
.0045601
.121702
-.0852974
1.137941

Log likelihood = -382.18666
marijuana Coef Std. Err z
sex -.4295858 .1756775 -2.45
age -.0096812 .0072661 -1.33
educ .0604882 .0312321 1.94
childs -.2182796 .0678493 -3.22
_cons .0640233 .5479272 0.12
fitstat, save
| logit
_________________________ +_____________
Log-likelihood |
Model | -382.187
Intercept-only | -397.470
_________________________ +_____________
Chi-square |
Deviance (df=594) | 764.373
LR (df=4) | 30.566
p-value | 0.000
_________________________ +_____________
R2 |
McFadden | 0.038
McFadden (adjusted) | 0.026
McKelvey & Zavoina | 0.069
Cox-Snell/ML | 0.050
Cragg-Uhler/Nagelkerke | 0.068
Efron | 0.053
Tjur's D | 0.051
Count | 0.140
Count (adjusted) | -1.270
_________________________ +_____________
il |
AIC | 774.373
AIC divided by N | 1.293
BIC (df=5) | 796.350
_________________________ +_____________
Variance of |
e | 3.290
y-star | 3.534

logit marijuana sex age educ childs rincom98

46953
96542
82272
82272

Number of obs =

Iteration O: log likelihood = -397.
Iteration 1: log likelihood = -379.
Iteration 2: log likelihood = -379.
Iteration 3: log likelihood = -379.
Logistic regression
Log likelihood = -379.82272
marijuana Coef std. Err
sex -.5153134 .181267
age -.0079214 .0072892

LR chi2 (5) =
Prob > chi2 =
Pseudo R2
P>|z| [95% Conf.
0.004 -.8705902
0.277 -.0222079

Interval]

-.1600365
.0063651



educ | .0849509 .0336502 2.52 0.012 .0189976 .1509041
childs | -.2199136 .0676456 -3.25 0.001 -.3524965 -.0873306
rincom98 | -.0352966 .0162986 -2.17 0.030 -.0672413 -.0033519
_cons | .3036228 .5639178 0.54 0.590 -.8016358 1.408881
fitstat, dif
| Current Saved Difference
_________________________ +_______________________________________
Log-likelihood |
Model | -379.823 -382.187 2.364
Intercept-only | -397.470 -397.470 0.000
_________________________ +_______________________________________
Chi-square |
D (df=593/594/-1) | 759.645 764.373 -4.728
LR (df=5/4/1) | 35.294 30.566 4.728
p-value | 0.000 0.000 0.030
_________________________ +_______________________________________
R2 |
McFadden | 0.044 0.038 0.006
McFadden (adjusted) | 0.029 0.026 0.003
McKelvey & Zavoina | 0.078 0.069 0.009
Cox-Snell/ML | 0.057 0.050 0.007
Cragg-Uhler/Nagelkerke | 0.078 0.068 0.010
Efron | 0.060 0.053 0.008
Tjur's D | 0.059 0.051 0.008
Count | 0.142 0.140 0.003
Count (adjusted) | -1.263 -1.270 0.008
_________________________ +_______________________________________
IC |
AIC | 771.645 774.373 -2.728
AIC divided by N | 1.288 1.293 -0.005
BIC (df=6/5/1) | 798.017 796.350 1.667
_________________________ +_______________________________________
Variance of |
e | 3.290 3.290 0.000
y-star | 3.569 3.534 0.035

Note: Likelihood-ratio test assumes saved model nested in current model.

Difference of 1.667 in BIC provides weak support for saved model.

It looks like based on BIC, we wouldn’t add income to the model. Another way to assess model fit
is to concentrate on its predictive powers. This is especially important when we plan to use the
model for prediction (e.g., we want to predict who would support legalization of marijuana for a
sample that does not contain those data but contains all our independent variables). One way to
assess predictive power is to look at prediction statistics:

qui logit marijuana sex age educ childs
[output omitted]

estat clas
Logistic model for marijuana

———————— True --------
Classified | D ~D | Total
___________ +__________________________+___________
+ | 72 48 | 120
- | 232 493 | 725
___________ +__________________________+___________
Total | 304 541 | 845

Classified + if predicted Pr (D) >= .5
True D defined as marijuana != 0



Sensitivity Pr( +| D) 23.68%
Specificity Pr( -1|~D) 91.13%
Positive predictive value Pr( D| +) 60.00%
Negative predictive value Pr(~D]| -) 68.00%
False + rate for true ~D Pr( +|~D) 8.87%
False - rate for true D Pr( -] D) 76.32%
False + rate for classified + Pr (~D| +) 40.00%
False - rate for classified - Pr( D| -) 32.00%
Correctly classified 66.86%

We can see that our model classified correctly 66.86% of cases. Note that it only classified 120
people out of 845 as supporters of marijuana legalization. The four cells in the table indicate how
classification by the model compares to true status of each case. The statistics below reflect the
percentage from the table above and indicate predictive success rates and rates of errors. Sensitivity
indicates the percentage of cases with Y=1 that we identified correctly, and specificity indicates the
percentages of cases with Y=0 that we classified correctly. We can see that our sensitivity is 23.68
but our specificity is much higher (91.13%). To alter that for a given model, we can change the
cutoff point. In this table, the cutoff is 0.5 — this means that all observations with predicted
probabilities of .5 and above get classified as 1 (i.e. supporters of legalization) and those
observations with predicted probabilities below .5 are classified as 0 (against legalization). It
appears that most cases have predicted probabilities below .5. Let’s try to shift that cutoff to .3:

. estat clas, cutoff (.3)
Logistic model for marijuana

———————— True —-—-—————-—
Classified | D ~D | Total
___________ +__________________________+___________
| 242 329 | 571
- | 62 212 | 274
___________ +__________________________+___________
Total | 304 541 | 845

Classified + if predicted Pr(D) >= .3

True D defined as marijuana != 0

Sensitivity Pr( +| D) 79.61%
Specificity Pr( -1|~D) 39.19%
Positive predictive value Pr( D] +) 42 .38%
Negative predictive value Pr(~D] -) 77.37%
False + rate for true ~D Pr( +1|~D) 60.81%
False - rate for true D Pr( -| D) 20.39%
False + rate for classified + Pr(~D| +) 57.62%
False - rate for classified - Pr( D| -) 22.63%
Correctly classified 53.73%

Now our sensitivity and specificity are more balanced. We can further examine them and then
select a cutoff point using the following command that graphs them against each other:

. lsens

10
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Looks like the cutoff point of .4 would be close to the point where specificity and sensitivity are
equal. But, the selection of the cutoff will depend on what’s more important to us — correctly
identify Os or 1s, and what type of error is more problematic to us — this will depend on the task at
hand.

Diagnostics for binary logit

A. Data Screening

Before conducting logistic regression, you should do data screening (like we did for OLS). That is,
it is a good idea to check univariate distributions of independent variables and if some deviate
substantially from normal and you can easily correct that with a transformation, then try those
transformations. Although normality is not required, it may help avoid other problems. Obviously,
this does not apply to your dependent variable. In logistic regression, we do not expect residuals to
be normally distributed, but normally distributed predictors still help avoid problems. Also, look
out for outliers and deal with those.

Further, before conducting multivariate analysis, you should also check the linearity of bivariate
relationships. In logistic regression, linearity and additivity in logits is expected (i.e. the
relationships are nonlinear, but they should be linear in terms of the log odds). Bivariate graphical
examination using lowess helps identify problems:

.lowess marijuana age

11



Lowess smoother
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bandwidth = .8

Note that we should not expect a straight line — after all, probability curve is not a straight line. But

this can help you spot, for instance, a parabola.
B. Multivariate Diagnostics

1. Linearity

In multivariate context, you can use boxtid--don’t forget to specify that you are using logit rather
then reg when using boxtid, i.e. use:

boxtid logit marijuana sex age educ childs

Iteration 0: Deviance = 1043.357

Iteration 1: Deviance = 1042.752 (change = -.6045771)
Iteration 2: Deviance = 1042.734 (change = -.018392)
Iteration 3: Deviance = 1042.733 (change = -.0012757)
Iteration 4: Deviance = 1042.732 (change = -.0002699)

-> gen double Iage 1 = X"2.0968-25.22385401 if e(sample)

-> gen double Iage 2 = X"2.0968*1n(X)-38.83014807 if e(sample)
(where: X = age/10)

-> gen double Ieduc 1 = X*7.1584-13.16861852 if e (sample)

-> gen double Ieduc 2 = X*7.1584*1n(X)-4.74218828 if e(sample)
(where: X = (educ+1)/10)

-> gen double Ichil 1 = X"*-0.8682-.4079980779 if e(sample)

-> gen double Ichil 2 = X*-0.8682*1n(X)-.4212880559 if e (sample)
(where: X = (childs+1))

-> gen double Isex 1 = sex-1 if e (sample)

[Total iterations: 12]

Box-Tidwell regression model

Logistic regression Number of obs = 845
LR chi2 (7) = 61.31

Prob > chi2 = 0.0000

Log likelihood = -521.36615 Pseudo R2 = 0.0555
marijuana | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
Tage 1 | -.014519  .0496234 -0.29  0.770 -.1117792 .0827411

Tage pl | -.0002796 .022828 -0.01 0.990 -.0450217 .0444626
Ieduc_ 1 | .0037305 .0183905 0.20 0.839 -.0323143 .0397753
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-.0500249
-.6483557
-2.674361
-.6163207
-.8860415

.0500449
2.768556
2.672886
-.0272447
-.3043811

Ieduc _pl | .00001 .0255285 0.00 1.000
Ichil 1 | 1.0601 .8716771 1.22 0.224
Ichil pl | -.0007376 1.364119 -0.00 1.000
Isex 1 | -.3217827 .1502772 -2.14 0.032
_cons | -.5952113 .1483855 -4.01 0.000
age | -.0184297 .0048878 -3.771 Nonlin. dev
pl | 2.096755 1.445354 1.451
educ | .0391444 .0254125 1.540 Nonlin. dev
pl | 7.158414 6.913701 1.035
childs | -.1810504 .0528152 -3.428 Nonlin. dev
pl | -.8682125 1.28118 -0.678
Deviance: 1042.732.

You can also try mrunning but it is based on OLS regression so it is a less precise tool here. Still, it
can identify potential problems.

mrunning marijuana sex

age educ childs

845 observations, R-sq = 0.0829
o
-
| —
©
c
©
2 I
&
£
1 1
o
T T T T T T ' T T T T T
1 1.2 1.4 1.6 1.8 2 20 40 60 80 100
respondents sex age of respondent
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e
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c
©
2 [
| | 3 I ‘ |
| | i1 d
! 0 [N © | | i
| :
o

h
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ighest year of school completed number of children

2. Outliers and influential data points

To detect influential observations and outliers, there are a few statistics you can obtain using

predict command after logit

P
xb

stdp
dbeta
deviance
dx2
ddeviance
hat
number
residuals
rstandard

predicted probability of a positive outcome;
linear prediction

standard error of the linear prediction
Pregibon (1981) Delta-Beta influence statist
deviance residual

the default

ic

Hosmer and Lemeshow (2000) Delta chi-squared infl. stat.
Hosmer and Lemeshow (2000) Delta-D influence statistic
Pregibon (1981) leverage

sequential number of the covariate pattern
Pearson residual (adj.

standardized Pearson residual (adj.

for # sharing covariate pattern)
for # sharing covariate pattern)
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To examine residuals, it is recommended to use standardized Pearson residual that accounts for in-
built heteroscedasticity of residuals in the logit model.

. logit marijuana sex age educ childs
[Output omitted]

. predict rstandard, rs
(1920 missing values generated)

We can plot residuals against the predicted values and examine observations with residuals high in
absolute value:

. predict prob
(option p assumed; Pr (marijuana))

(25 missing values generated)

. scatter prob rstandard, xline(0) mlabel (id)

T I T

0 2
standardized Pearson residual

Observations on the far left or far right deserve further examination. Here, we would especially
look at 766 and 2189, but also 2673.

To identify influential observations, we can obtain a number of leverage statistics:
. predict dbeta, dbeta

(1920 missing values generated)
. predict hat, hat
(1920 missing values generated)
. predict dx2, dx2
(1920 missing values generated)

We can then examine these graphically to identify problematic observations:
. scatter dbeta prob, mlabel (id)
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Observations 766, 2189 stand out again as the ones with highest values of dbeta.
Can similarly examine dx2 and hat values. We can also combine the information about multiple
leverage statistics in one plot:

. scatter dbeta rs [w=dx2], mfc(white) xline(0)

[To]
—

0
standardized Pearson residual

Again those two observations (we can verify that they are the same ones by using mlabel option).

These observations definitely warrant investigation — we need to figure out what’s special about
them and then decide how to deal with them.

2. Additivity
You can once again use fitint command to search for checking for interactions; the syntax for

testing all interactions in the same combined model is
. fitint logit marijuana sex age educ childs, twoway(sex age educ childs) factor (sex)

But it is also a good idea to test interactions one by one as well, like we did in OLS.
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Note, however, that interactions as a method to compare two or more groups can be problematic in
logit or probit models because the coefficients are scaled according to the differences in residual
dispersion —as | mentioned earlier, residual variance in both logit and probit models is always fixed
to the same number, regardless of how much variance your predictors actually explain. That is, if
you are trying to compare the effect of a predictor in two groups — e.g., men and women—the
coefficients for one of the groups could be “scaled up” and therefore larger because the residual
variance is smaller (i.e., we explain the variance better than in the other group), and such difference
will end up incorporated in the residual term because the variance is fixed to be the same for both
groups (and that will still be the case if we estimate separate models for the two groups rather than
use interaction terms). This problem was originally noted in: Allison, Paul D. 1999. “Comparing
Logit and Probit Coefficients Across Groups.” Sociological Methods and Research, 28: 186-208.

The best way to explore group comparisons under these circumstances is by creating graphs of
predicted probabilities with confidence intervals, or better yet, a graph for the difference in
predicted probabilities, also with confidence intervals:

http://www.indiana.edu/~jslsoc/files research/rm4cldv/group_compare/long_group nd_2007-04-
16.pdf

We will deal with that later, when discussing the interpretation of results. You may also want to
look into heterogenous choice models implemented in oglm:
https://www3.nd.edu/~rwilliam/stats/Oglm.pdf
https://www3.nd.edu/~rwilliam/oglm/RW_Hetero_Choice.pdf

3. Multicollinearity

For multicollinearity, we can again use VIFs. But to obtain them, we need to run a regular OLS
regression model with the same variables and then obtain VIFs — VIF command doesn’t function
after logit regression, even though VIF statistics don’t depend on the dependent variable but rather

on the correlations among the independent ones. So here’s what we’d do:
. qui reg marijuana sex age educ childs

. vif

Variable | VIF 1/VIF
_____________ +______________________
childs | 1.24 0.803381
age | 1.21 0.825046
educ | 1.04 0.961375
sex | 1.01 0.985827
_____________ +______________________

Mean VIFE | 1.13

4. Error term distribution

In terms of the error term distribution, we don’t check for it directly (like with heteroscedasticity
test in OLS). There is in-built heteroscedasticity in logit models — the binomial distribution of the
error term implies that the variance of the error term is the greatest at the predicted probabilities
around .5 and the smallest as we approach 0 or 1. But we still should be concerned whether the
logit assumptions about the variance of the error term are correct. To test that, we can obtain robust
standard error estimates and compare them with the regular standard error estimates. If they are
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similar, then our logistic results are fine. If they differ a lot, however, we would rather report
robust standard errors as they are more appropriate in the presence of assumption violations.

. logit marijuana sex age educ childs

Logistic regression Number of obs = 845
LR chi2 (4) = 54.35

Prob > chi2 = 0.0000

Log likelihood = -524.84843 Pseudo R2 = 0.0492
marijuana | Coef Std. Err z P>|z| [95% Conf. Intervall]
_____________ +________________________________________________________________
sex | -.34799 .1494796 -2.33 0.020 -.6409647 -.0550152

age | -.0183109 .0049147 -3.73 0.000 -.0279436 -.0086782

educ | .0401891 .025553 1.57 0.116 -.009894 .0902722

childs | -.1696747 .0536737 -3.16 0.002 -.2748733 -.0644762

cons | .5412516 .45956009 1.18 0.239 -.3594713 1.441974

. logit marijuana sex age educ childs, robust

Logistic regression Number of obs = 845

Wald chi2 (4) = 44 .52

Prob > chi2 = 0.0000

Log pseudolikelihood = -524.84843 Pseudo R2 = 0.0492
| Robust

marijuana | Coef. Std. Err. z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

sex | -.34799 .149609 -2.33 0.020 -.6412182 -.0547617

age | -.0183109 .0048417 -3.78 0.000 -.0278003 -.0088214

educ | .0401891 .0269052 1.49 0.135 -.0125441 .0929223

childs | -.1696747 .0566388 -3.00 0.003 -.2806846 -.0586648

_cons | .5412516 .4677331 1.16 0.247 -.3754884 1.457992

The two sets of standard errors look the same — no violation of assumptions about error
distribution.

5. Overdispersion

In logistic regression, the expected variance of the dependent variable can be compared to the
observed variance, and discrepancies may be considered under- or overdispersion. If there is
substantial discrepancy, standard errors will be over-optimistic. The expected variance is ybar*(1 -
ybar), where ybar is the mean of the fitted values. This can be compared with the actual variance in
observed DV to assess under- or overdispersion. We can see the extent of overdispersion by
examining the ratio of D/df (where D is the deviance (-2LL) and df=N-k) -- given that we
eliminated other reasons for deviance to be large (e.g., outliers, nonlinearities, other model
specification errors like omitted variables). In the fitstat output, we find D(df=840) is 1049.697.

The ratio is
. di 1049.697/840
1.2496393

The ratio is close enough to 1 for us not to worry. If there is overdispersion (which is much more
common than underdispersion), we can use adjusted standard errors. Adjusted standard errors will
make the confidence intervals wider. Adjusted SE equals SE * sqrt(D/df), where D is the deviance
(-2LL) and df=N-k. However, typically overdispersion reflects the fact that we need to respecify
the model (i.e., we omitted an important variable), or that our observations are not independent —
i.e., data over time or clusters of observations. We’ll discuss methods to deal with clusters of
observation towards the end of this course, when talking about survey data.
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