Sociology 7704: Regression Models for Categorical Data
Instructor: Natasha Sarkisian

Multinomial logit

We use multinomial logit models when we have multiple categories but cannot order them (or we
can, but the parallel regression assumption does not hold). Here the order of categories is
unimportant. Multinomial logit model is equivalent to simultaneous estimation of multiple logits
where each of the categories is compared to one selected so-called base category. But if we would
estimate them separately, we would lose information, as each logit would be estimated on a
different sample (selected category plus base category, with all other categories omitted from
analyses). To avoid that, we use multinomial logit.

Multinomial logit does not assume parallel slopes — so if we estimate it for ordinal level variable

and then plot cumulative probabilities, we would see something like this (note the variation in
slope!):

B =
E

Let’s estimate a multinomial logit model for the same variable we used above:

. mlogit natarmsy age sex childs educ born

Iteration O: log likelihood = -1410.9409
Iteration 1: log likelihood = -1388.2174
Iteration 2: log likelihood = -1387.8455
Iteration 3: log likelihood = -1387.8455
Multinomial logistic regression Number of obs = 1337
LR chi2 (10) = 46.19
Prob > chi2 = 0.0000
Log likelihood = -1387.8455 Pseudo R2 = 0.0164
natarmsy | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
too_little |
age | .00548 .0039204 1.40 0.162 -.0022039 .0131639
sex | -.1919797 .1251455 -1.53 0.125 -.4372605 .053301
childs | -.0194531 .0411446 -0.47 0.636 -.100095 .0611887
educ | -.0102552 .0210369 -0.49 0.626 -.0514869 .0309764
born | -.8933254 .2685341 -3.33 0.001 -1.419643 -.3670082
_cons | .9484192 .4877278 1.94 0.052 -.0075097 1.904348
_____________ +________________________________________________________________
|



+
too much |
age | -.0135326 .0049789 -2.72 0.007 -.023291 -.0037742
sex | .0420268 .1485803 0.28 0.777 -.2491853 .3332389
childs | -.0128663 .05194¢64 -0.25 0.804 -.1146793 .0889468
educ | .0475599 .0257811 1.84 0.065 -.0029701 .09809
born | .1980988 .2326137 0.85 0.394 -.2578157 .6540132
_cons | -1.054006 .5377872 -1.96 0.050 -2.10805 .0000374

Model Interpretation
1. Coefficients and Odds Ratios

Note that we now have two sets of coefficients to interpret. So here, we can see that variable born
differentiates between categories “too little” and “about right” while variable age differentiates
between “too much” and “about right.”

Also note that it automatically omitted the category “about right” -- it usually omits the category
with the largest number of observations unless you specify otherwise. Here’s how we change that:

. mlogit natarmsy age sex childs educ born, b(l)

Iteration O: log likelihood = -1410.9409
Iteration 1: log likelihood = -1388.2174
Iteration 2: log likelihood = -1387.8455
Iteration 3: log likelihood = -1387.8455
Multinomial logistic regression Number of obs = 1337
LR chi2 (10) = 46.19
Prob > chi2 = 0.0000
Log likelihood = -1387.8455 Pseudo R2 = 0.0164
natarmsy | Coef std. Err z P> z| [95% Conf. Interval]
_____________ +________________________________________________________________
too_ little | (base outcome)
_____________ +________________________________________________________________
about right |
age | -.00548 .0039204 -1.40 0.162 -.0131639 .0022039
sex | .1919797 .1251455 1.53 0.125 -.053301 .4372605
childs | .0194531 .0411446 0.47 0.636 -.0611887 .100095
educ | .0102552 .0210369 0.49 0.626 -.0309764 .0514869
born | .8933254 .2685341 3.33 0.001 .3670082 1.419643
_cons | -.9484192 .4877278 -1.94 0.052 -1.904348 .0075097
_____________ +________________________________________________________________
too much |
age | -.0190126 .0051423 -3.70 0.000 -.0290914 -.0089338
sex | .2340066 .1550509 1.51 0.131 -.0698876 .5379007
childs | .0065869 .0537937 0.12 0.903 -.0988468 .1120205
educ | .0578152 .0270313 2.14 0.032 .0048347 .1107956
born | 1.091424 .2962107 3.68 0.000 .5108619 1.671987
_cons | -2.002425 .5858736 -3.42 0.001 -3.150716 -.8541341

This allows us to see that variables age, educ and born differentiate between categories too much
and too little. Variables sex and childs appear not to be able to differentiate between any
categories.

Interpretation of results is again very similar. Since we cannot interpret sizes of regular
coefficients, let’s examine odds ratios. To obtain odds ratios in multinomial logit models, we use
option rrr rather than or.

. mlogit natarmsy age sex childs educ born, rrr

Iteration O: log likelihood -1410.9409
Iteration 1: log likelihood = -1388.2174
Iteration 2: log likelihood = -1387.8455
Iteration 3: log likelihood = -1387.8455

Multinomial logistic regression Number of obs = 1337



LR chi2 (10) = 46.19

Prob > chi2 = 0.0000

Log likelihood = -1387.8455 Pseudo R2 0.0164

natarmsy | RRR Std. Err z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________
too little |

age | 1.005495 .003942 1.40 0.162 .9977985 1.013251

sex | .8253236 .1032856 -1.53 0.125 .6458032 1.054747

childs | .9807349 .0403519 -0.47 0.636 .9047515 1.0631

educ | .9897972 .0208223 -0.49 0.626 .9498161 1.031461

born | .4092924 .109909 -3.33 0.001 .2418004 .692804

_cons | 2.581625 1.25913 1.94 0.052 .9925184 6.715028

_____________ +________________________________________________________________

about right | (base outcome)

_____________ +________________________________________________________________
too_much |

age | .9865586 .0049119 -2.72 0.007 .9769782 .9962329

sex | 1.042922 .1549578 0.28 0.777 .7794356 1.395481

childs | .9872161 .0512823 -0.25 0.804 .891652 1.093022

educ | 1.048709 .0270369 1.84 0.065 .9970343 1.103062

born | 1.219083 .2835753 0.85 0.394 .7727376 1.923244

_cons | .3485387 .1874396 -1.96 0.050 .1214747 1.000037

(Outcome natarmsy==about right is the comparison group)

Here we can, for example, say that being foreign born decreases one’s odds of saying that the U.S.
spends too little versus that the U.S. spends “about right” on national defense by approximately
60%.

We can also use listcoef which generates odds ratios for all possible models group comparisons --
one table per variable:

listcoef

mlogit (N=1337): Factor change in the odds of natarmsy
Variable: age (sd=17.396)

| b Z P>|z| e”b e’bStdX
_____________________________ +_________________________________________________
too little vs about right | 0.0055 1.398 0.162 1.005 1.100
too little vs too much | 0.0190 3.697 0.000 1.019 1.392
about right wvs too little | -0.0055 -1.398 0.162 0.995 0.909
about right vs too much | 0.0135 2.718 0.007 1.014 1.265
too much vs too little | -0.0190 -3.697 0.000 0.981 0.718
too much vs about right | -0.0135 -2.718 0.007 0.987 0.790
Variable: sex (sd=0.498)

| b Z P>|z| e’b e’bStdX
_____________________________ +_________________________________________________
too little vs about right | -0.1920 -1.534 0.125 0.825 0.909
too little vs too much | -0.2340 -1.509 0.131 0.791 0.890
about right vs too little | 0.1920 1.534 0.125 1.212 1.100
about right vs too much | -0.0420 -0.283 0.777 0.959 0.979
too much vs too little | 0.2340 1.509 0.131 1.264 1.124
too much vs about right | 0.0420 0.283 0.777 1.043 1.021
Variable: childs (sd=1.698)

| b zZ P>|z| e”b e’bStdX
_____________________________ +_________________________________________________
too little vs about right | -0.0195 -0.473 0.636 0.981 0.968
too little vs too much | -0.0066 -0.122 0.903 0.993 0.989
about right wvs too little | 0.0195 0.473 0.636 1.020 1.034
about right vs too much | 0.0129 0.248 0.804 1.013 1.022
too much vs too little | 0.0066 0.122 0.903 1.007 1.011
too much vs about right | -0.0129 -0.248 0.804 0.987 0.978
Variable: educ (sd=3.042)



| b z P>|z| e”b e”bStdX
_____________________________ +_________________________________________________
too little vs about right | -0.0103 -0.487 0.626 0.990 0.969
too little vs too much | -0.0578 -2.139 0.032 0.944 0.839
about right wvs too little | 0.0103 0.487 0.626 1.010 1.032
about right vs too much | -0.0476 -1.845 0.065 0.954 0.865
too much vs too little | 0.0578 2.139 0.032 1.060 1.192
too much vs about right | 0.0476 1.845 0.065 1.049 1.156
Variable: born (sd=0.276)

| b Z P>|z| e”b e”bStdX
_____________________________ +_________________________________________________
too little vs about right | -0.8933 -3.327 0.001 0.409 0.781
too little vs too much | -1.0914 -3.685 0.000 0.336 0.740
about right vs too little | 0.8933 3.327 0.001 2.443 1.280
about right vs too much | -0.1981 -0.852 0.394 0.820 0.947
too much vs too little | 1.0914 3.685 0.000 2.979 1.352
too much vs about right | 0.1981 0.852 0.394 1.219 1.056

We can also use all the same options with listcoef that we used with binary logit, and some
additional options that help restrict which comparisons are shown: positive, negative, adjacent, gt
(greater than), It (less than). For example:

listcoef, positive

mlogit (N=1337): Factor change in the odds of natarmsy
Variable: age (sd=17.396)

| b zZ P>|z| e”b e”bStdX
_____________________________ +_________________________________________________
too little vs about right | 0.0055 1.398 0.162 1.005 1.100
too little vs too much | 0.0190 3.697 0.000 1.019 1.392
about right vs too much | 0.0135 2.718 0.007 1.014 1.265
Variable: sex (sd=0.498)

| b zZ P>|z| e”b e’bStdX
_____________________________ +_________________________________________________
about right vs too little | 0.1920 1.534 0.125 1.212 1.100
too much vs too little | 0.2340 1.509 0.131 1.264 1.124
too much vs about right | 0.0420 0.283 0.777 1.043 1.021
Variable: childs (sd=1.698)

| b Z P>|z| e’b e’bStdX
_____________________________ +_________________________________________________
about right vs too little | 0.0195 0.473 0.636 1.020 1.034
about right vs too much | 0.0129 0.248 0.804 1.013 1.022
too much vs too little | 0.0066 0.122 0.903 1.007 1.011
Variable: educ (sd=3.042)

| b Z P>|z| e”b e”bStdX
_____________________________ +_________________________________________________
about right vs too little | 0.0103 0.487 0.626 1.010 1.032
too much vs too little | 0.0578 2.139 0.032 1.060 1.192
too much vs about right | 0.0476 1.845 0.065 1.049 1.156
Variable: born (sd=0.276)

| b Z P>|z| e”b e”bStdX
_____________________________ +_________________________________________________
about right vs too little | 0.8933 3.327 0.001 2.443 1.280
too much vs too little | 1.0914 3.685 0.000 2.979 1.352
too much vs about right | 0.1981 0.852 0.394 1.219 1.056



We can also filter by p-value:
listcoef, pvalue(.05)

mlogit (N=1337): Factor change in the odds of natarmsy (P<0.05)
Variable: age (sd=17.396)

| b Z P>|z| e™b e’ bStdX
_____________________________ +_________________________________________________
too little vs too much | 0.0190 3.697 0.000 1.019 1.392
about right vs too much | 0.0135 2.718 0.007 1.014 1.265
too much vs too little | -0.0190 -3.697 0.000 0.981 0.718
too much vs about right | -0.0135 -2.718 0.007 0.987 0.790
Variable: sex (sd=0.498)
Variable: childs (sd=1.698)
Variable: educ (sd=3.042)

| b Z P>|z| e”b e’ bStdX
_____________________________ +_________________________________________________
too little vs too much | -0.0578 -2.139 0.032 0.944 0.839
too much vs too little | 0.0578 2.139 0.032 1.060 1.192
Variable: born (sd=0.276)

| b Z P>|z| e”b e’bStdX
_____________________________ +_________________________________________________
too little vs about right | -0.8933 -3.327 0.001 0.409 0.781
too little vs too much | -1.0914 -3.685 0.000 0.336 0.740
about right vs too little | 0.8933 3.327 0.001 2.443 1.280
too much vs too little | 1.0914 3.685 0.000 2.979 1.352

Milogitplot command can assist you in interpreting all these sets of odds ratios further:

. mlogitplot, symbols(L R M) sig(.05)
Odds Ratio Scale Relative to Category about right
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Logit Coefficient Scale Relative to Category about right



2. Predicted probabilities and changes in predicted probabilities.

We can also examine predicted probabilities or changes in predicted probabilities. That is, we can
use prvalue, prtab and prgen, and prchange just like we did for ordered logit.

. predict pml pm2 pm3

(option p assumed; predicted probabilities)

(26 missing values generated)

. dotplot pml pm2 pm3

© -

T T T
Pr(natarmsy==1) Pr(natarmsy==2) Pr(natarmsy==3)

If we compare this to the dotplot for ologit (obtained earlier), we will see some differences in the
middle category; this is common. Overall, however, if the differences are substantial and affect
other categories as well, mlogit may be more appropriate than ologit.
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. mtable, atmeans

Expression: Pr (natarmsy), predict(outcome())

too_little about right too_much

Specified values of covariates
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p-value | 0.186 0.512 0.038

born |
+SD | -0.057 0.031 0.026
p-value | 0.000 0.028 0.015

mchangeplot, symbols(L R M) sig(.05)

age
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Marginal Effect on Outcome Probability

We can also use marginsplot and mgen commands to create graphs of probabilities, for example:

mgen, at(age=(20(10)80) sex=1 born=1) atmeans noatlegend stub(mn )
Predictions from: margins, at(age=(20(10)80) sex=1 born=1) atmeans noatlegend
predict (outcome () )

Variable Obs Unique Mean Min Max Label

mn_prl 7 7 .4044002 .335254  .4711151 pr(y=too little) from margins
mn 111 7 7 .3519058 .2777555 .3981721 95% lower limit

mn ull 7 7 .4568945 .3927526 .5440581 95% upper limit

mn_age 7 7 50 20 80 age of respondent

mn_ Cprl 7 7 .4044002 .335254  .4711151 pr(y<=too little)

mn_pr2 7 7 .4165292 .409603 .4202045 pr(y=about right) from margins
mn 112 7 7 .3642952 .3443215 .379344 95% lower limit

mn_ul2 7 7 .4687631 .4606194 .4842867 95% upper limit

mn_Cpr2 7 7 .8209293 .7448571 .8854191 pr(y<=about right)

mn_pr3 7 7 .1790707 .1145808 .2551429 pr(y=too much) from margins
mn 113 7 7 .1398252 .0754612 .1966254 95% lower limit

mn_ul3 7 7 .2183162 .1537005 .3136605 95% upper limit

mn Cpr3 7 2 1 .9999999 1 pr(y<=too much)

1 1.854899 13.35228 1

lab var mn prl "Too little"
lab var mn pr2 "About right"
lab var mn pr3 "Too much”

graph twoway (line mn prl mn pr2 mn pr3 mn age, sort lpattern(solid dash longdash)
ytltle("Predlcted probability"))



20 40 60 80
age of respondent
Too little About right
— — — Too much

Measures of Fit and Hypotheses Testing:
We can obtain fit statistics using fitstat like we did for binary and ordered logit.

To test hypotheses, you can use either tests based on likelihood ratos or Wald tests; the results are
typically the same. Here, | demonstrate only the likelihood ratio-based options; see help mlogtest
for Wald test options if desired. Compared to ordered logit, for multinomial logit hypotheses tests
become more complicated. Here, if we want to drop a variable from the model, we want to test that
it is not significant across all outcome categories (regardless of which one we omit). For that we
use mlogtest command:

. mlogtest, 1r
**** Likelihood-ratio tests for independent variables
Ho: All coefficients associated with given variable(s) are O.

natarmsy | chi?2 df P>chi?2
_____________ +_________________________
age | 14.266 2 0.001

sex | 3.186 2 0.203

childs | 0.231 2 0.891

educ | 4.935 2 0.085

born | 17.322 2 0.000

We conclude that variables sex, childs, and educ are not statistically significant across equations
and could potentially be dropped (although we saw that educ was significant on .05 level in one of
the models, when we join the results across categories it appears to be not significant). We can do
the same with Wald test; the results look very similar but Wald test takes less computational
resources (if the dataset is large and the model is very complex, for example) and Wald test can be

used with robust SE (and LR test cannot).
. mlogtest, wald

Wald tests for independent variables (N=1337)

Ho: All coefficients associated with given variable(s) are 0

| chiz2 daf P>chi?2
_________________ +_________________________
age | 13.702 2 0.001

sex | 3.185 2 0.203

childs | 0.231 2 0.891

educ | 4.849 2 0.089



born | 14.956 2 0.001

We can also test jointly whether these three variables are statistically significant as a set — i.e.. we
can check if it makes sense to drop all three variables, sex, childs, and educ:

. mlogtest, lr set(sex childs educ)
**** TLikelihood-ratio tests for independent variables
Ho: All coefficients associated with given variable(s) are O.

natarmsy | chi?2 df P>chi?2
_____________ +_________________________
age | 14.266 2 0.001
sex | 3.186 2 0.203
childs | 0.231 2 0.891
educ | 4.935 2 0.085
born | 17.322 2 0.000
_____________ +_________________________
set 1: | 8.812 6 0.184

sex |

childs |

educ |

The test indicates that we can drop all three (we interpret the probability for set_1).

Another test that we might want to do is to test whether it makes sense to combine some categories
of our dependent variable — e.g. whether it makes sense to combine “too little” and “about right.”
We can combine them if all of our independent variables jointly do not differentiate between the
two categories — nothing predicts that they are different.

. mlogtest, lrcomb

**** TR tests for combining outcome categories

Ho: All coefficients except intercepts associated with given pair
of outcomes are 0 (i.e., categories can be collapsed).

Categories tested | chi?2 df P>chi?2
__________________ +-—_—————
about ri-too much | 16.204 5 0.006
about ri-too litt | 16.993 5 0.005
too much-too litt | 41.557 5 0.000

LR test and Wald test produce similar results - for all combinations of categories, we reject the
hypotheses that our variables do not differentiate between categories. So we cannot combine any.

Diagnostics

1. Independence of Irrelevant Alternatives (11A) assumption

One important assumption of multinomial logit is the assumption of Independence of Irrelevant
Alternatives (I1A). That is, multinomial logit models assume that odds for each specific pair of
outcomes do not depend on other outcomes available (deleting outcomes should not affect the odds
among the remaining outcomes). Unfortunately, we do not have a good applied test for this
assumption. The results of existing tests -- Hausman test and Small-Hsiao test — are inconsistent,
and simulations show problematic conclusions — see pp. 407-410 in Long and Freese for discussion
of this. Therefore, the main advice is that we should be sure that from a theoretical standpoint, the
alternatives “can plausibly be assumed to be distinct and weighted independently in the eyes of
each decision maker” (McFadden 1974, cited in Long and Freese). That is, we should not have a
scenario where some of the alternatives are closer substitutes for each other than other alternatives.

If 1A indeed assumption does not hold, one alternative that allows partial relaxation of that
assumption is a nested model, i.e. a model in which some categories are considered to share a nest
together. I1A holds within a nest but not across nests.

10



1 2

The commands in Stata that you’d want to look into are nlogit and nlogitrum, but the data would
have to be restructured with each alternative being a separate observation (separate line in the
dataset) — see “Specification(s) of Nested Logit Models” by Florian Heiss:

4

5 6

7

http://www.mea.mpisoc.mpg.de/uploads/user_mea_discussionpapers/dp16.pdf

2. Multicollinearity.

As was the case for binary and ordered logit, we can test for multicollinearity by running OLS

model instead of multinomial logit and using vif.

3. Linearity and Additivity.

As usual, you should start the process by examining the univariate distributions and the bivariate

relationships. Like in ordered logit, in order to examine bivariate relationships as well as to conduct
many diagnostics, we should create the dichotomies corresponding to each equation:

. gen natarmsyl=(natarmsy==1) if (natarmsy==

(2008 missing values generated)

. gen natarmsy2=(natarmsy==2) if (natarmsy==

(1894 missing values generated)

For each of these dichotomous variables, we can then obtain lowess plots, just like we did for
ordered logit. We can then use these dichotomies to run binary logits and conduct various

multivariate diagnostics.

. logit natarmsyl age sex childs educ born

Logistic regression

| natarmsy==3)

| natarmsy==3)

Number of obs
LR chi2 (5)
Prob > chi?2

Log likelihood = -473.24011
natarmsyl Coef Std. Err
age .020441 .0052802
sex -.257952 .157136
childs -.0009124 .0532109
educ -.0584523 .0282196
born -1.038649 .3007153
_cons 1.91543 .5894602

.03079
.050029
.1033791
-.0031428
-.4492576
3.07075

. logit natarmsy2 age sex childs educ born

Logistic regression

Log likelihood = -534.01018

863
15.22
0.0095
0.0140

natarmsy?2 Coef Std. Err
age .0128336 .0049079

sex -.0536544 .1496431
childs .0114876 .0522925
educ -.0426433 .0247853

Pseudo R2
P>|z| [95% Conf
0.000 .010092
0.101 -.5659329
0.986 -.1052039
0.038 -.1137618
0.001 -1.62804
0.001 .7601091
Number of obs =
LR chi2 (5) =
Prob > chi2 =
Pseudo R2 =
P> z| [95% Conf.
0.009 .0032143
0.720 -.3469494
0.826 -.0910039
0.085 -.0912217

Interval]

.0224529
.2396406
.1139791

.005935

11



born | -.2192112 .232668 -0.94 0.346 -.675232 .2368097
_cons | 1.062732 .5271903 2.02 0.044 .0294579 2.096006

Note that in order for this approach to work, each binary model should look similar to the
corresponding equation of the multinomial model. That will typically be the case if the II1A
assumption holds. But let’s compare:

. mlogit natarmsy age sex childs educ born, b(3)

Multinomial logistic regression Number of obs = 1337

LR chi2 (10) = 46.19

Prob > chi?2 = 0.0000

Log likelihood = -1387.8455 Pseudo R2 = 0.0164

natarmsy | Coef Std. Err z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________
too little |

age | .0190126 .0051423 3.70 0.000 .0089338 .0290914

sex | -.2340065 .1550509 -1.51 0.131 -.5379007 .0698876

childs | -.0065869 .0537937 -0.12 0.903 -.1120205 .0988468

educ | -.0578152 .0270313 -2.14 0.032 -.1107956 -.0048347

born | -1.091425 .2962101 -3.68 0.000 -1.671986 -.5108634

_cons | 2.0024206 .5858732 3.42 0.001 .8541352 3.150716

_____________ +________________________________________________________________
about right |

age | .0135326 .0049789 2.72 0.007 .0037742 .023291

sex | -.0420268 .1485803 -0.28 0.777 -.3332389 .2491853

childs | .0128663 .05194¢64 0.25 0.804 -.0889467 .1146793

educ | -.0475599 .0257811 -1.84 0.065 -.09809 .0029701

born | -.1980986 .2326138 -0.85 0.394 -.6540133 .2578161

_cons | 1.054006 .5377872 1.96 0.050 -.0000375 2.10805

(natarmsy==too much is the base outcome)

Looks similar. For each of these binary models, you can do the full range of linearity diagnostics
that are appropriate for binary models — i.e., run Box-Tidwell test, etc. Like with ordered logit, you
should be aware of the possibility that you might find different patterns for different binary models;
in that case, you’ll have to figure out how to reconcile them in mlogit.

You can also use fitint for these binary models (fitint does not work with mlogit), although keep in
mind the warnings regarding interpreting interactions mentioned in the discussion of binary logit.

4. Qutliers and Influential Observations

In order to do unusual data diagnostics for multinomial logit, we should also rely on separate binary
models we’ve used in previous steps. All the same methods we discussed for binary logit apply
here as well, and like in ordered logit, the fact that you’ll have to do a separate search for unusual
data for each binary model may complicate things if they suggest that different observations are
influential. Make sure that you test the potential effects of these influential observations on your
mlogit model (rather than just on individual binary logits).

5. Error term distribution

Like we did for binary and ordered logit, we can obtain robust standard errors for the multinomial
logit model in order to check whether our assumptions about error distribution hold (compare with
the model on pp.1-2):

. mlogit natarmsy age sex childs educ born, robust
Multinomial logistic regression Number of obs = 1337

Wald chi2 (10) = 40.85

Prob > chi2 = 0.0000

Log pseudolikelihood = -1387.8455 Pseudo R2 = 0.01l64

| Robust

natarmsy | Coef. Std. Err. Z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________
too little |

age | .00548 .0039155 1.40 0.162 -.0021943 .0131543
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sex | -.1919798 .1254863 -1.53 0.126 -.4379285 .0539689

childs | -.0194531 .0405578 -0.48 0.631 -.0989449 .0600386

educ | -.0102552 .019935 -0.51 0.607 -.049327 .0288166

born | -.8933259 .2701132 -3.31 0.001 -1.422738 -.3639138

cons | .9484196 .4706752 2.02 0.044 .0259132 1.870926

_____________ +________________________________________________________________
too much |

age | -.0135326 .0050701 -2.67 0.008 -.0234697 -.0035955

sex | .0420268 .1482007 0.28 0.777 -.2484413 .3324949

childs | -.0128663 .0534559 -0.24 0.810 -.117638 .0919054

educ | .0475599 .0278666 1.71 0.088 -.0070576 .1021775

born | .1980986 .2302914 0.86 0.390 -.2532642 .6494614

_cons | -1.054006 .5745375 -1.83 0.067 -2.180079 .0720669

(natarmsy==about right is the base outcome)

The problem of perfect prediction in logit, ologit and mlogit

Sometimes when running analyses for categorical outcomes, we run into the problem of perfect
prediction (perfect separation). For example:

mlogit natarmsy age sex childs i.educ born
Iteration O: log likelihood = -1410.9409

Iteration 1: log likelihood = -1367.5166
Iteration 2: log likelihood = -1365.8514
Iteration 3: log likelihood = -1365.6452
Iteration 4: log likelihood = -1365.603
Iteration 5: log likelihood = -1365.5934
Iteration 6: log likelihood = -1365.5918
Iteration 7: log likelihood = -1365.5916
Iteration 8: log likelihood = -1365.5916
Iteration 9: log likelihood = -1365.5916
Multinomial logistic regression Number of obs = 1337
LR chi2 (48) = 90.70
Prob > chi2 = 0.0002
Log likelihood = -1365.5916 Pseudo R2 0.0321
natarmsy | Coef Std. Err Z P> z| [95% Conf. Interval]
_____________ +________________________________________________________________
too little |
age | .0077433 .0040551 1.91 0.056 -.0002046 .0156912
sex | -.2088383 .1271909 -1.64 0.101 -.4581279 .0404513
childs | =-.0220421 .0424435 -0.52 0.604 -.1052298 .0611457
|
educ |
1 | -14.02326 2287.734 -0.01 0.995 -4497.9 4469.853
2 .7975166 1.408267 0.57 0.571 -1.962636 3.557669
3 | -14.72475 1617.191 -0.01 0.993 -3184.36 3154.911
4 | .6330178 1.880399 0.34 0.736 -3.052496 4.318532
5 | -.0348836 1.698759 -0.02 0.984 -3.364391 3.294624
6 | 1.462163 1.461175 1.00 0.317 -1.401688 4.326014
7 1.367193 1.742221 0.78 0.433 -2.047498 4.781884
8 | -.2593536 1.321068 -0.20 0.844 -2.848599 2.329892
9 | .8447427 1.29865 0.65 0.515 -1.700564 3.390049
10 | .571317 1.284897 0.44 0.657 -1.947035 3.089669
11 | .6201585 1.265171 0.49 0.624 -1.859531 3.099848
12 | .7967541 1.241752 0.64 0.521 -1.637035 3.230543
13 | 1.138548 1.252149 0.91 0.363 -1.315618 3.592715
14 | .7783036 1.249805 0.62 0.533 -1.671269 3.227876
15 | .403707 1.268138 0.32 0.750 -2.081797 2.889211
16 | .6326915 1.251138 0.51 0.613 -1.819494 3.084877
17 | .6176581 1.294039 0.48 0.633 -1.918613 3.153929
18 | .4673819 1.272086 0.37 0.713 -2.025861 2.960624
19 | .2741944 1.382557 0.20 0.843 -2.435568 2.983957
20 | .2140612 1.321342 0.16 0.871 -2.375722 2.803844
|
born | -.8631172 .275354 -3.13 0.002 -1.402801 -.3234333
cons | -.0048823 1.30334 -0.00 0.997 -2.559381 2.549616
_____________ +________________________________________________________________
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age
sex
childs

educ
1

O J oy Ul b WDN

-.0150876
.0871751
-.0174627

-15.44767
-.6565282
-15.41758
-14.1123
-14.76051
-.1012508
.47356
-.6447085
-.6039934
-.8738507
-.4533993
-.5542129
-.8929498
-.7702706
-1.019888
-.4348901
-1.006427
-.0167748
.5239221
-.3176245

.1878618
.1783677

.0051592
.1507846
.0532681

2992.642
1.499769
2115.643
1632.554
1192.335
1.542967
.888627
.327683
.336655
.320653
1.27835
.251803
.274891
.264435
.291675
.262842
.338302
.277241
.329945
.316061

o e e

I N T = W = W S S SRR

.2412132
1.317699

-2.92
0.58
-0.33

-0.01
-0.44
-0.01
-0.01
-0.01
-0.07

0.25
-0.49
-0.45
-0.66
-0.35
-0.44
-0.70
-0.61
-0.79
-0.34
-0.75
-0.01

0.39
-0.24

0.003
0.563
0.743

.996
.662
.994
.993
.990
.948
.802
.627
.651
.508
.723
.658
.484
.542
.430
.731
.452
.990
.694
.809

[eNeoNeoBoNeoNoNeoNolNoNeoloNeoNoNoNeo o NeoNoNeoNo)

0.436
0.892

-.0251994
-.2083572
-.1218663

-5880.919

-3.59602
-4162.001

-3213.86
-2351.693
-3.125411
-3.228081

-3.24692
-3.223788
-3.462283

-2.95892
-3.007701

-3.39169
-3.248517
-3.551524
-2.910014

-3.62945
-2.520121
-2.082722
-2.897056

-.2849074
-2.404275

-.0049758
.3827074
.0869409

5850.023

2.

282964

4131.166
3185.635
2322.172

2.
.175201
.957503
.015802
.714581
.052121
.899275
1.60579
.707976
.511748
.040234
.616597
.486571
.130567
.261807

[ ST N

NWNDEFE DN

922909

.660631
2.

761011

tab educ natarmsy if e (sample)

highest
year of
school

completed t

|
|
|
|
+
|
|
|
|
|
|
|
|
[
9 |
[
|
[
|
[
|
[
|
[
|
[
+
|

Same for logit:

national defense -- version y
oo littl about rig too much
1 2 1

0 1 0

4 5 2

0 2 0

1 1 0

1 3 0

4 3 2

2 1 1

6 17 6
12 13 6
14 20 7
25 34 19
147 161 75
62 52 19
71 84 35
22 38 12
58 76 42
13 19 6
20 31 24
4 8 11

7 15 9
474 586 277

Standard errors questionable.

- - - - - - - — — — — — == ==
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gen natarmsy much=(natarmsy>2)

(1417 missing values generated)

natarmsy much age sex childs i.educ born

logit

note: 1l.educ

1.educ
note: 3.educ

3.educ
note: 4.educ

4 .educ
note: 5.educ

5.educ
Iteration O:
Iteration 1:
Iteration 2:
Iteration 3:
Iteration 4:

Logistic regression

Log likelihood

if natarmsy<.

Number of obs =

1328
49.53
0.0003
0.0364

ch

age
sex
ilds

!'= 0 predicts failure perfectly
dropped and 1 obs not used
!= 0 predicts failure perfectly
dropped and 2 obs not used
!= 0 predicts failure perfectly
dropped and 2 obs not used
!= 0 predicts failure perfectly
dropped and 4 obs not used
log likelihood = -680.03556
log likelihood = -656.1523
log likelihood = -655.26998
log likelihood = -655.26951
log likelihood = -655.26951
= -655.26951
| Coef. Std. Err
+
| -.0184596 .0048344 -3
| .177159 .1404164 1.
| -.0082026 .0499406 -0
|
|
| 0 (empty)
| =-.9725465 1.414436 -0
| 0 (empty)
| 0 (empty)
| 0 (empty)
| —.7142174 1.427659 -0
| -.206547 1.654014 -0
| -.5872592 1.258309 -0
| -.9528357 1.259104 -0
| -1.102306 1.248176 -0
| -.7045497 1.206182 -0
| -.8804889 1.18186 -0
| -1.383427 1.202971 -1
| -1.0862 1.193678 -0
| -1.18731 1.221016 -0
| -.6890343 1.191933 -0
| -1.252424 1.265548 -0
| -.2018643 1.204461 -0
| .4046231 1.249601 0
|  -.4204136 1.242649 -0
|
| .4849982 .2296187 2
| —.4493042 1.243108 -0

Interval]

.69

.50
.12
.47
.76
.88
.58
.75
.15
.91
.97
.58
.99
.17
.32
.34

LR chi2 (20) =
Prob > chi?2 =
Pseudo R2

P>|z| [95% Conf.
0.000 -.0279348
0.207 -.098052
0.870 -.1060844
0.492 -3.74479
0.617 -3.512377
0.901 -3.448355
0.641 -3.0535
0.449 -3.420635
0.377 -3.548687
0.559 -3.068623
0.456 -3.196891
0.250 -3.741207
0.363 -3.425766
0.331 -3.580458
0.563 -3.025181
0.322 -3.732853
0.867 -2.562565
0.746 -2.044549
0.735 -2.855961
0.035 .0349537
0.718 -2.88575

-.0089843
.4523701
.0896792

1.799697

.083942
.035261
.878982
.514963
.344074
.659524
.435913
.9743542
.253367
.205838
.647112
.228005
.158836
.853795
.015133

PR R RPN

NN N R R e

.9350427
1.987142

The default solution in logit vs. mlogit is different — logit drops out the problematic cases and
estimates the model without them; mlogit estimates the model with them but reports that SE are

problematic. I usually try to avoid presenting either solution if possible and try to group the dummy
variables (this is most common when we use groups of dummies with some small categories). For
example here:

gen educbS=educ
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(12 missing values generated)

replace educb=5 if educ<5b
(30 real changes made)

logit natarmsy much age sex

Iteration
Iteration
Iteration
Iteration
Iteration

S w NP O

log likelihood =

log likelihood
log likelihood
log likelihood

log likelihood =

Logistic regression

Log likelihood

= -656.81221

childs

-682.
= -657.
= -656.
= -656.
-656.

i.educ5 born

13296
74178
81282
81221
81221

ch

e

age
sex
ilds

ducbh

-.0186419
.170222
-.0068073

.5019065
1.005343
.6242693
.2575394
.1097225
.5066539
.3311681
-.1716817
.1253993
.0254604
.5231261
-.0368228
1.012178
1.618002
.7934305

.4729687
-1.631795

.0048357
.1402375
.0496539

1.033303
1.326445
.7822843
.7806997
.7581913
.6876422
.64536
.6811657
.6628517
.7100298
.6594135
.778926
.6810217
.759363
.7467434

.2289636
.7728145

|
F NP OOOOOOOOOOoOOoOo

.49
.76
.80
.33
.14
.74
.51
.25
.19
.04
.79
.05
.49
.13
.06

.07
.11

Number of obs = 1337

LR chi2 (19) = 50.064

Prob > chi2 = 0.0001

Pseudo R2 = 0.0371

P>|z| [95% Conf. Intervall]
0.000 -.0281198 -.009164
0.225 -.1046385 .4450824
0.891 -.1041272 .0905127
0.627 -1.52333 2.527143
0.448 -1.594441 3.605128
0.425 -.9089798 2.157518
0.741 -1.272604 1.787683
0.885 -1.376305 1.59575
0.4061 -.8411 1.854408
0.608 -.9337143 1.596051
0.801 -1.506742 1.163379
0.850 -1.173766 1.424565
0.971 -1.366172 1.417093
0.428 -.7693006 1.815553
0.962 -1.56349 1.489844
0.137 -.3225998 2.346956
0.033 .1296779 3.106326
0.288 -.6701597 2.257021
0.039 .0242082 .9217292
0.035 -3.146483 -.1171062

And if combining dummies is not possible (e.g. this happens for a single dummy), | would opt for
leaving out the problematic variable rather than leaving out cases.
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