SOCY7704: Regression Models for Categorical Data
Instructor: Natasha Sarkisian

Count Data Models

Negative Binomial Model

Using Poisson, we attempted to account for some sources of heterogeneity — but the model doesn’t
fit very well. Maybe we didn’t take into account all sources of heterogeneity — could try additional
variables. That’s important to explore, but rarely helps. In practice, Poisson regression model
rarely fits due to overdispersion. One key process that often creates overdispersion is known as
contagion — violation of the assumption of the independence of events. This assumption is often
unrealistic; e.g. if you have your first child, that increases your chances of having your second.

To better model overdispersion from this and other sources, we can use negative binomial model.
It allows taking into account unobserved heterogeneity. To do so, it introduces an additional
parameter — alpha, known as the dispersion parameter. Increasing alpha increases the conditional
variance of our count variable. If alpha is zero, the model becomes regular Poisson model. Here’s
a comparison of Poisson and negative binomial distributions with different variances for mean
count=1 and mean count=10:
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Figure 8.6. Comparisons of the Negative Binomial and Poisson Distributions



And here’s an example of regression curves for negative binomial models:
Fanel A: NBRM with a=0.5
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Figure 8.7. Distribution of Counts for the Negative Binomial Regression Model

Now let’s run NB model for our data:

nbreg childs sex married sibs
Fitting Poisson model:
Iteration O:
Iteration 1:
Iteration 2:
Fitting constant-only model:
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Negative binomial regression

Dispersion
Log likelihood

= mean
= -4711.6789

born educ

-4784.5123
-4784.5079
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-5023.5027
-4901.9594
-4901.9154
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-4732.0308

-4712.421
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-4711.6789
-4711.6789

Number of obs
LR chi2 (5)
Prob > chi2
Pseudo R2



childs | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
sex | .2086278 .0346569 6.02 0.000 .1407014 .2765542

married | .471206 .034682 13.59 0.000 .4032305 .5391816

sibs | .0397041 .0054244 7.32 0.000 .0290725 .0503358

born | -.2231164 .0616061 -3.62 0.000 -.3438622 -.1023706

educ | -.0616831 .0058316 -10.58 0.000 -.0731129 -.0502534

_cons | .9198597 .1211683 7.59 0.000 .6823743 1.157345
_____________ +________________________________________________________________
/lnalpha | -1.523939 1086487 -1.736886 -1.310991
_____________ +________________________________________________________________
alpha | .2178522 0236694 .1760678 .2695528
Likelihood-ratio test of alpha=0: chibar2 (01) = 145.66 Prob>=chibar2 = 0.000

Or Dbetter yet, we will estimate this model with robust standard errors — it is recommended that we
use them with negative binomial model in case the variance is misspecified.

. nbreg childs sex married sibs born educ, robust

Negative binomial regression Number of obs = 2745

Dispersion = mean Wald chi2 (5) = 386.44

Log pseudolikelihood = -4711.6789 Prob > chi2 = 0.0000
| Robust

childs | Coef. Std. Err. z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

sex | .2086278 .035025 5.96 0.000 .1399801 .2772755

married | .471206 .0348392 13.53 0.000 .4029225 .5394895

sibs | .0397041 .005216 7.61 0.000 .029481 .0499272

born | -.2231164 .0585515 -3.81 0.000 -.3378753 -.1083576

educ | -.0616831 .0060308 -10.23 0.000 -.0735032 -.049863

_cons | .9198597 .1225929 7.50 0.000 .6795821 1.160137

_____________ +________________________________________________________________

/lnalpha | -1.523939 1167233 -1.752712  -1.295165

_____________ +________________________________________________________________

alpha | .2178522 0254284 .1733033 .2738526

Interpretation of the results for negative binomial model is exactly the same as for Poisson model.
But we have an extra line of output to interpret — the likelihood-ratio test. This allows us to see
whether NB model should be used in place of regular Poisson. If probability is below the cutoff, it
means that there is overdispersion (Alpha is not zero) and we should be using NB model rather

than Poisson. Let’s compare the coefficients to Poisson:
. est store nbreg

. qui poisson childs sex married sibs born educ

. est store poisson

. est table poisson nbreg, star b(%4.3f)

Variable | poisson nbreg
_____________ +__________________________
childs |

sex | 0.195**x* 0.209***

married | 0.449*** 0.471***

sibs | 0.039**x* 0.040***

born | -0.221*** =0.223***

educ | -0.062*** -0.062**x*

_cons | 0.955%*x* 0.920***
_____________ +__________________________

lnalpha |
cons | —-1.524**x*

legend: * p<0.05; ** p<0.01l; *** p<0.001



Now let’s compare their performance graphically:
. mgen, pr(0/8) meanpred stub(nb )
Predictions from:

Variable Obs Unique Mean Min Max Label

nb val 9 9 4 0 8 number of children

nb obeg 9 9 .1111111 .0080146 .2892532 Observed proportion

nb oble 9 9 .7987047 .2892532 1 Observed cum. proportion
nb preq 9 9 .1105054 .0049814 .2786995 Avg predicted Pr (y=#)

nb prle 9 9 .7990764 .2423203 .9945486 Avg predicted cum. Pr (y=#)
nb ob pr 9 9 .0006057 -.108572 .0479451 Observed - Avg Pr (y=#)

lab var nb preq "Negative binomial"
. graph twoway connected poi obeq poi preq mpoi preq nb preq poi val, ylabel(0 (.1) .3)
ytitle ("Probability of Count")
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The graph confirms the results of the alpha significance test: NB model does better than regular
multivariate Poisson, especially with regard to dealing with Os. But it still underpredicts zeros and
overpredicts ones, and it underpredicts 2s and 3s (while Poisson was more on target).
Unfortunately, the goodness of fit tests that are available after Poisson are not available after
negative binomial. But the significance test for alpha tells us if negative binomial model performs
better than Poisson. We can also compare them using BIC:

. qui poisson childs sex married sibs born educ

. qui fitstat, save

. qui nbreg childs sex married sibs Dborn educ
fitstat, diff

| Current Saved Difference
_________________________ +_______________________________________
Log-likelihood [
Model | -4711.679 -4784.508 72.829
Intercept-only | -4901.915 -5070.839 168.924



_________________________ +_______________________________________
Chi-square |
D (df=2738/2739/-1) | 9423.358 9569.016 -145.658
Wald (df=5/5/0) | 386.441
p-value | 0.000 0.000 .
_________________________ +_______________________________________
R2 |
McFadden | 0.039 0.056 -0.018
McFadden (adjusted) | 0.037 0.055 -0.018
Cox-Snell/ML | 0.129 0.188 -0.059
Cragg-Uhler/Nagelkerke | 0.133 0.193 -0.060
_________________________ +_______________________________________
IC |
AIC | 9437.358 9581.016 -143.658
AIC divided by N | 3.438 3.490 -0.052
BIC (df=7/6/1) | 9478.781 9616.521 -137.740

Note: Some measures based on pseudolikelihoods.
Difference of 137.740 in BIC provides very strong support for current model.

The interpretation tools for nbreg are the same as for Poisson; we can get IRR and use mtable,
mchange, and mgen commands. We could also estimate this model with exposure.

As for diagnostics, everything is similar to Poisson, except for boxtid which doesn’t work with
nbreg. To obtain a GLM negative binomial model that’s identical to the one estimated to nbreg,
you need to specify the exact alpha to use — otherwise it uses the default value of 1 and the results

differ. So here we use:
. glm childs sex married sibs Dborn educ, family(nb .2178552)

Generalized linear models No. of obs = 2745

Optimization : ML Residual df = 2739

Scale parameter = 1

Deviance = 3284.463783 (1/df) Deviance = 1.199147

Pearson = 2908.984543 (1/df) Pearson = 1.062061
Variance function: V(u) = u+(.2178552)u"2 [Neg. Binomial]

Link function : g(u) = 1ln(u) [Log]
AIC = 3.437289
Log likelihood = -4711.678905 BIC = -18401.67
| OIM

childs | Coef. Std. Err. Z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

sex | .2086279 .0346384 6.02 0.000 .1407379 .2765179

married | .4712062 .0346364 13.60 0.000 .4033201 .5390924

sibs | .0397041 .0054238 7.32 0.000 .0290737 .0503346

born | -.2231165 .0616059 -3.62 0.000 -.3438618 -.1023712

educ | -.0616831 .0058316 -10.58 0.000 -.0731129 -.0502533

_cons | .9198593 .1211388 7.59 0.000 .6824317 1.157287

We can obtain residuals etc. after this.

In addition to regular nbreg where overdispersion is assumed to be constant, we can also use
generalized negative binomial regression to model overdispersion (i.e., allow for different degree

of overdispersion for different groups):

. gnbreg childs sex married sibs Dborn educ, lnalpha(sex married sibs born educ)

Generalized negative binomial regression Number of obs = 2745
LR chi2 (5) = 222.46
Prob > chi2 = 0.0000



Log likelihood = -4587.1261 Pseudo R2 = 0.0237

| Coef. Std. Err. z P>|z]| [95% Conf. Interval]

_____________ +________________________________________________________________
childs |

sex | .079685 .0354711 2.25 0.025 .0101628 .1492071

married | .3413691 .0387924 8.80 0.000 .2653374 .4174008

sibs | .0369471 .0047258 7.82 0.000 .0276847 .0462095

born | -.1967968 .0582151 -3.38 0.001 -.3108963 -.0826973

educ | -.0514978 .0056236 -9.16 0.000 -.0625199 -.0404758

_cons | 1.085011 .1189463 9.12 0.000 .8518807 1.318142

_____________ +________________________________________________________________
lnalpha |

sex | -1.557369 .1884906 -8.26 0.000 -1.926804 -1.187934

married | -4.256861 .819715 -5.19 0.000 -5.863473 -2.650249

sibs | -.1051836 .0405024 -2.60 0.009 -.1845669 -.0258003

born | .1353893 .3910783 0.35 0.729 -.63111 .9018887

educ | .1619184 .0358938 4.51 0.000 .0915678 .232269

cons | .3279141 .7155448 0.46 0.647 -1.074528 1.730356

Looks like overdispersion parameter varies by sex, marital status, number of siblings, and
education, so the contagion process operates differently for different people (it is especially
pronounced for men, unmarried people, those with fewer siblings, and those with more education).

Zero-Inflated Count Data Models

The problem that our negative binomial model still has — underpredicting zeros, overpredicting
ones -- is very common and sometimes this problem can be very severe when there are a lot of
zeros in the distribution. We can use zero-inflated count models to correct for that — they model
two different processes. They assume two latent groups — one is capable of having positive counts,
the other one is not — it will always have zero count. For example, some will have children
eventually, but others do not have kids and cannot have them anymore or do not want to, so their
count will always remain zero. But these two groups are latent — no information on their fertility
situation or preferences. We can also have zeros in the first group. We can distinguish structural
zeros (this behavior is not in this person’s repertoire at all) vs chance zeros (this behavior is in this
person’s repertoire, but did not occur during the specified period). E.g.: “How many times last
week did you smoke marijuana?” Some zeros mean the person never smokes it; other zeros mean
the person does smoke but did not smoke last week.

Therefore, this model is a two-step process — first, you have to predict the membership in two
groups — “always zero” and “not always zero” -- and second, predict the count in the “not always

zero” group.
. zip childs sex married sibs born educ, inflate(sex married sibs born educ)

Zero-inflated poisson regression Number of obs = 2745

Nonzero obs = 1951

Zero obs = 794

Inflation model = logit LR chi2 (5) = 130.65

Log likelihood = -4524.192 Prob > chi2 = 0.0000

childs | Coef. Std. Err. z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________
childs |

sex | .0014908 .0320997 0.05 0.963 -.0614234 .064405



married | .0307475 .0333411 0.92 0.356 -.0345999 .0960949

sibs | .0292838 .0045691 6.41 0.000 .0203286 .038239

born | -.1728303 .0563097 -3.07 0.002 -.2831953 -.0624654

educ | -.0382489 .0052824 -7.24 0.000 -.0486021 -.0278956

_cons | 1.363043 .1094042 12.46 0.000 1.148615 1.577472

_____________ +________________________________________________________________
inflate |

sex | -1.267402 .1427508 -8.88 0.000 -1.547189 -.987616

married | -3.867796 .6722317 -5.75 0.000 -5.185346 -2.5502406

sibs | -.0907598 .0284525 -3.19 0.001 -.1465256 -.034994

born | .3182067 .2733966 1.16 0.244 -.2176408 .8540542

educ | .1671403 .0267744 6.24 0.000 .1146635 .2196171

_cons | -.9103566 .5168716 -1.76 0.078 -1.923406 .102693

Note the inflate option we specified — we have to specify that option, it tells Stata what variables to
use to predict the membership in “Always Zero” group. In this case, we used the same variables
but we could have used a smaller subset of the variables or even different variables altogether.

We’ll return to interpreting this output. But let’s prepare to graphically examine the fit:
mgen, pr(0/8) meanpred stub(zip )
Predictions from:

Variable Obs Unique Mean Min Max Label

zip val 9 9 4 0 8 number of children

zip obeqg 9 9 .1111111 .0080146 .2892532 Observed proportion

zip oble 9 9 .7987047 .2892532 1 Observed cum. proportion
zip preq 9 9 .1109995 .0021302 .2880608 Avg predicted Pr (y=#)

zip prle 9 9 .7987461 .2880608 .9989958 Avg predicted cum. Pr (y=#)
zip ob pr 9 9 .0001116 -.021445 .0296168 Observed - Avg Pr (y=#)

lab var zip preq "ZIP"

We will also estimate a zero-inflated negative binomial model and then compare all of them.

zinb childs sex married sibs born educ, inflate(sex married sibs born educ)

Zero-inflated negative binomial regression Number of obs = 2745

Nonzero obs = 1951

Zero obs = 794

Inflation model = logit LR chi2 (5) = 124.23

Log likelihood = -4522.91 Prob > chiz2 = 0.0000

childs | Coef std. Err z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________
childs |

sex | .0060583 .0331917 0.18 0.855 -.0589961 .0711128

married | .0346028 .0344018 1.01 0.314 -.0328234 .102029

sibs | .0297016 .004743 6.26 0.000 .0204055 .0389977

born | -.1730859 .0572733 -3.02 0.003 -.2853394 -.0608324

educ | -.0384851 .0054302 -7.09 0.000 -.0491281 -.0278422

_cons | 1.347192 .1125643 11.97 0.000 1.12657 1.567814

_____________ +________________________________________________________________
inflate |

sex | -1.290154 .1468538 -8.79 0.000 -1.577982 -1.002326

married | -4.405718 1.215488 -3.62 0.000 -6.78803 -2.023406

sibs | -.0911606 .02947 -3.09 0.002 -.1489207 -.0334006

born | .3417874 .2818703 1.21 0.225 -.2106681 .894243

educ | .1715742 .0277136 6.19 0.000 .1172565 .2258919

_cons | -.9919407 .5360101 -1.85 0.064 -2.042501 .0586197

_____________ +________________________________________________________________

/lnalpha | -3.718083 6593754 -5.64 0.000 -5.010435 -2.425731

_____________ +________________________________________________________________

alpha | .0242805 0160099 .006668 .0884134



mgen, pr(0/8) meanpred stub(zinb )
Predictions from:

Variable

zinb val

zinb obeg
zinb oble
zinb preq
zinb prle

zinb ob pr

Obs Unique Mean Min Max
9 9 4 0 8
9 9 .1111111 .0080146 .2892532
9 9 .7987047 .2892532 1
9 9 .1109602 .0025516 .288929
9 9 .798788 .288929 .9986414
9 9 .000151 -.0256162 .0320836

number of children
Observed proportion
Observed cum. proportion
Avg predicted Pr (y=%#)

Avg predicted cum. Pr (y=#)
Observed - Avg Pr (y=#)

lab var zinb preq "ZINB"
graph twoway connected poi obeq mpoi preq nb preq zip preq zinb preq poi val, ylabel(0
ytitle ("Probability of Count”)

(.1) .3)

™ -

2 4 6 8
number of children
—&—— Observed proportion ——¢—- Multivariate Poisson
----- ®---- Negative binomial — A— - 7ZIP
— »— ZINB

Both ZIP and ZINB approximate the observed distribution much better than regular Poisson and
NB models. We could also plot deviations from observed counts rather than actual counts and get
comparisons of fit:

countfit childs sex married sibs born educ, inflate(sex married sibs born educ)

Variable | PRM NBRM
_______________________________ +_______________________
|

respondents sex | 1.216 1.232

| 6.73 6.02

married | 1.566 1.602

| 15.54 13.59

number of brothers and sisters | 1.039 1.041
| 9.14 7.32

was r born in this country | 0.802 0.800

| -4.23 -3.62

highest year of school compl~d | 0.940 0.940
| -12.81 -10.58

ZI1P ZINB

1.001 1.006
0.05 0.18
1.031 1.035
0.92 1.01
1.030 1.030
6.41 6.26
0.841 0.841
-3.07 -3.02
0.962 0.962
-7.24 -7.09



Constant | 2.598 2.509 3.908
| 9.45 7.59 12.46
_______________________________ +____________________________________
lnalpha |
Constant | 0.218
| -14.03
_______________________________ +____________________________________
inflate |
respondents sex | 0.282
| -8.88
|
married | 0.021
| -5.75
number of brothers and sisters | 0.913
| -3.19
was r born in this country | 1.375
| 1.16
highest year of school compl~d | 1.182
| 6.24
Constant | 0.402
| -1.76
_______________________________ +____________________________________
Statistics |
alpha | 0.218
N | 2745 2745 2745
11 | -4784.508 -4711.679 -4524.192
bic | 9616.521 9478.781 9143.394
aic | 9581.016 9437.358 9072.383

Comparison of Mean Observed and Predicted Count

Maximum At Mean
Model Difference Value |Diff|
PRM -0.122 1 0.028
NBRM -0.109 1 0.027
Z1P 0.030 2 0.012
ZINB 0.032 2 0.013

PRM: Predicted and actual probabilities

Count Actual Predicted |Diff| Pearson
0 0.289 0.192 0.097 135.055
1 0.170 0.292 0.122 139.312
2 0.238 0.242 0.005 0.231
3 0.174 0.147 0.027 13.674
4 0.067 0.073 0.006 1.361
5 0.026 0.032 0.006 3.069
6 0.015 0.013 0.002 0.526
7 0.008 0.005 0.003 5.097
8 0.012 0.002 0.011 163.156
9 0.000 0.001 0.001 1.924
Sum 1.000 1.000 0.278 463.405

NBRM: Predicted and actual probabilities

Count Actual Predicted |Diff | Pearson
0 0 0 0.047 24.952
1 0 0 0.109 116.103
2 0.238 0.206 0.032 13.512
3 0 0 0.048 50.004
4 0 0 0.003 0.315

2745
-4522.910
9148.749
9071.821

legend: b/t



5 0.026 0.037 0.011 8.820
6 0.015 0.019 0.005 3.010
7 0.008 0.010 0.002 0.867
8 0.012 0.005 0.007 30.214
9 0.000 0.003 0.003 7.016
Sum 1.000 0.997 0.265 254.813
ZIP: Predicted and actual probabilities
Count Actual Predicted |Diff| Pearson
0 0.289 0.288 0.001 0.014
1 0.170 0.191 0.021 6.403
2 0.238 0.208 0.030 11.561
3 0.174 0.155 0.019 6.512
4 0.067 0.089 0.021 14.210
5 0.026 0.042 0.016 16.286
6 0.015 0.017 0.003 1.083
7 0.008 0.006 0.002 1.298
8 0.012 0.002 0.010 135.546
9 0.000 0.001 0.001 1.886
Sum 1.000 1.000 0.124 194.798
ZINB: Predicted and actual probabilities
Count Actual Predicted |Diff| Pearson
0 0.289 0.289 0.000 0.001
1 0.170 0.196 0.026 9.202
2 0.238 0.206 0.032 13.730
3 0.174 0.151 0.023 9.695
4 0.067 0.087 0.020 12.320
5 0.026 0.042 0.016 16.787
6 0.015 0.018 0.003 1.855
7 0.008 0.007 0.001 0.389
8 0.012 0.003 0.010 104.052
9 0.000 0.001 0.001 2.445
Sum 1.000 1.000 0.132 170.477
Tests and Fit Statistics
PRM BIC= 9616.521 AIC= 9581.016 Prefer Over Evidence
vs NBRM BIC= 9478.781 dif= 137.740 NBRM PRM Very strong
AIC= 9437.358 dif= 143.658 NBRM PRM
LRX2= 145.658 prob= 0.000 NBRM PRM p=0.000
vs ZIP BIC= 9143.394 dif= 473.127 ZIP PRM Very strong
AIC= 9072.383 dif= 508.632 ZIP PRM
Vuong= 11.165 prob= 0.000 ZIP PRM p=0.000
vs ZINB BIC= 9148.749 dif= 467.772 ZINB PRM Very strong
AIC= 9071.821 dif= 509.195 ZINB PRM
NBRM BIC= 9478.781 AIC= 9437.358 Prefer Over Evidence
vs ZIP BIC= 9143.394 dif= 335.387 ZzIP NBRM Very strong
AIC= 9072.383 dif= 364.974 71P NBRM
vs ZINB BIC= 9148.749 dif= 330.032 ZINB NBRM Very strong
AIC= 9071.821 dif= 365.537 ZINB NBRM
Vuong= 10.441 prob= 0.000 ZINB NBRM p=0.000
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ZI1P BIC= 9143.394 AIC= 9072.383 Prefer Over Evidence

vs ZINB BIC= 9148.749 dif= -5.355 ZIP ZINB Positive
AIC= 9071.821 dif= 0.563 ZINB ZIP
LRX2= 2.563 prob= 0.055 ZINB Z1IP p=0.000

Note: positive deviations show underpredictions.
< qa

.05
1

0 1 2 3 4 5 6 7 8 9

So now let’s interpret this final model:

zip childs sex married sibs born educ, inflate(sex married sibs born educ)

Zero-inflated poisson regression Number of obs = 2745

Nonzero obs = 1951

Zero obs = 794

Inflation model = logit LR chi2 (5) = 130.65

Log likelihood = -4524.192 Prob > chi2 = 0.0000

childs | Coef. Std. Err. Z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________
childs |

sex | .0014908 .0320997 0.05 0.963 -.0614234 .064405

married | .0307475 .0333411 0.92 0.356 -.0345999 .0960949

sibs | .0292838 .0045691 6.41 0.000 .0203286 .038239

born | -.1728303 .0563097 -3.07 0.002 -.2831953 -.0624654

educ | -.0382489 .0052824 -7.24 0.000 -.0486021 -.0278956

_cons | 1.363043 .1094042 12.46 0.000 1.148615 1.577472

_____________ +________________________________________________________________
inflate |

sex | -1.267402 .1427508 -8.88 0.000 -1.547189 -.987616

married | -3.867796 .6722317 -5.75 0.000 -5.185346 -2.550246

sibs | -.0907598 .0284525 -3.19 0.001 -.1465256 -.034994

born | .3182067 .2733966 1.16 0.244 -.2176408 .8540542

educ | .1671403 .0267744 6.24 0.000 .1146635 .2196171

_cons | -.9103566 .5168716 -1.76 0.078 -1.923406 .102693

The first set of coefficients is from the equation predicting counts for the “Not Always Zero”
group. These show that number of siblings increases number of children and being foreign born
and having more education decreases it. These coefficients can be interpreted the same way as
regular Poisson coefficients.



The second set of coefficients is from the equation that predicts membership in “Always Zero”
group. These can be interpreted as logit coefficients. Note that they predict zeros — so their sign

will usually be the opposite to that of the coefficients in the upper half of the output. These show

that women are less likely than men to be in “Always zero” group, married are less likely than
single people to be in it, those with more siblings are also less likely to be in it, and those with
more education are more likely to be in “Always zero” group.

To be able to interpret the size of these effects, let’s use listcoef to see IRR (but irr option is also
available for zip and zinb commands themselves):

listcoef
zip (N=2745): Factor Change in Expected Count
Observed SD: 1.6887584
Count Equation: Factor Change in Expected Count for Those Not Always 0

childs | b z P> z| e”b e”bStdX SDofX
_____________ +________________________________________________________
sex | 0.00149 0.046 0.963 1.0015 1.0007 0.4970

married | 0.03075 0.922 0.356 1.0312 1.0154 0.4985

sibs | 0.02928 6.409 0.000 1.0297 1.0919 3.0008

born | -0.17283 -3.069 0.002 0.8413 0.9512 0.2893

educ | -0.03825 -7.241 0.000 0.9625 0.8925 2.9741

Binary Equation: Factor Change in Odds of Always 0

AlwaysO | b z P>|z| e’b e’ bStdX SDofX
_____________ +________________________________________________________
sex | -1.26740 -8.878 0.000 0.2816 0.5326 0.4970

married | -3.86780 -5.754 0.000 0.0209 0.1454 0.4985

sibs | -0.09076 -3.190 0.001 0.9132 0.7616 3.0008

born | 0.31821 1.1064 0.244 1.3747 1.0964 0.2893

educ | 0.16714 6.243 0.000 1.1819 1.6439 2.9741

Or better yet with percentages:
listcoef, percent
zip (N=2745): Percentage Change in Expected Count
Observed SD: 1.6887584
Count Equation: Percentage Change in Expected Count for Those Not Always 0

childs | b z P>|z| % $StdX SDofX
_____________ +________________________________________________________
sex | 0.00149 0.046 0.963 0.1 0.1 0.4970

married | 0.03075 0.922 0.356 3.1 1.5 0.4985

sibs | 0.02928 6.409 0.000 3.0 9.2 3.0008

born | -0.17283 -3.069 0.002 -15.9 -4.9 0.2893

educ | -0.03825 -7.241 0.000 -3.8 -10.8 2.9741

Binary Equation: Factor Change in Odds of Always O

AlwaysO | b zZ P>z % $StdX SDofX
_____________ +________________________________________________________
sex |  -1.26740 -8.878 0.000 -71.8 -46.7 0.4970

married | -3.86780 -5.754 0.000 -97.9 -85.5 0.4985

sibs | -0.09076 -3.190 0.001 -8.7 -23.8 3.0008

born | 0.31821 1.164 0.244 37.5 9.6 0.2893

educ | 0.16714 6.243 0.000 18.2 64.4 2.9741
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Each additional sibling increases one’s number of kids by 3%, each year of education decreases it
by 3.8%, and being foreign born decreases it by 16%. At the same time, women’s odds of having
no kids (being in always zero group) are 71.8% lower than men’s, and the odds for married to be in
always zero group are 97.9% lower than for single people. Further, each additional sibling
decreases one’s odds of not having kids by 8.7%, and each additional year of education increases
those odds by 18.2%.

Further, as for regular Poisson, we can interpret predicted rates, predicted probabilities of specific
counts, and changes in both rates and probabilities using mtable, mchange, and mgen. Predicted
rates for by born and sex for married people:

. zip childs i.sex i.married sibs i.born educ, inflate(i.sex i.married sibs i.born
educ)

. mtable, at(sex=(l1 2) born=(1 2) married==1) atmeans stat (ci)

Expression: Predicted number of childs, predict /()

| sex born mu 11 ul

__________ +_________________________________________________

1] 1 1 2.215 2.102 2.328

2 | 1 2 1.849 1.645 2.053

3 2 1 2.253 2.142 2.364

4 | 2 2 1.891 1.684 2.099

Specified values of covariates

| married sibs educ
__________ +_____________________________
Current | 1 3.6 13.4

Changes in predicted rates as well as marginal effects:

. mchange, amount(all)

zip: Changes in mu | Number of obs = 2745
Expression: Predicted number of childs, predict()
| Change p-value
________________ +______________________
sex \
female vs male | 0.332 0.000
married |
1 vs 0 | 0.801 0.000
sibs |
0 to 1 | 0.068 0.000
+1 | 0.076 0.000
+SD | 0.235 0.000
Range | 2.547 0.000
Marginal | 0.075 0.000
born |
no vs yes | -0.361 0.000
educ |
0 to 1 | -0.153 0.000
+1 | -0.108 0.000
+SD | -0.310 0.000
Range | -2.411 0.000
Marginal | -0.110 0.000

Average prediction
1.812

We interpret these results the same way as for regular Poisson model. Discrete changes and
marginal effects are particularly useful in zero-inflated models because they combine the two
equations to calculate the overall impact of each variable on the expected count. | would

13



recommend presenting marginal effects (average ones or at means) along with two sets of
exponentiated coefficients (IRR and OR) when reporting the results of zero-inflated models.

We can also examine predicted probabilities of counts:

. mtable, at(sex=(1 2) born=(1 2) married==1) atmeans pr(0/4)
Expression: Pr(childs), predict (pr())
| sex born none one two three four
__________ +_____________________________________________________________________
1 | 1 1 0.123 0.230 0.261 0.197 0.111
2 | 1 2 0.174 0.275 0.262 0.166 0.079
3| 2 1 0.109 0.233 0.265 0.200 0.113
4 | 2 2 0.156 0.281 0.268 0.170 0.081
Specified values of covariates
| married sibs educ
__________ +_____________________________
Current | 1 3.6 13.4
And changes in probabilities of counts:
. mchange, amount(all) pr(0/4)
zip: Changes in PrAny0O | Number of obs = 2745
Expression: Pr(childs = any 0), predict (pr(0))
| 0 1 2 3 4
________________ +_______________________________________________________
sex \
female vs male | -0.135 0.038 0.040 0.029 0.016
p-value | 0.000 0.000 0.000 0.000 0.000
married \
1 vs 0 | -0.314 0.084 0.092 0.069 0.040
p-value | 0.000 0.000 0.000 0.000 0.000
sibs |
0 to 1 | -0.016 -0.003 0.003 0.006 0.005
p-value | 0.000 0.0406 0.006 0.000 0.000
+1 | -0.014 -0.004 0.001 0.005 0.005
p-value | 0.000 0.003 0.249 0.000 0.000
+SD | -0.042 -0.013 0.002 0.014 0.016
p-value | 0.000 0.001 0.529 0.000 0.000
Range | -0.282 -0.145 -0.079 0.035 0.111
p-value | 0.000 0.000 0.007 0.094 0.000
Marginal | -0.015 -0.004 0.001 0.005 0.005
p-value | 0.000 0.005 0.160 0.000 0.000
born |
no vs yes | 0.067 0.026 -0.007 -0.028 -0.027
p-value | 0.014 0.100 0.444 0.001 0.000
educ |
0 to 1 | 0.009 0.009 0.009 0.003 -0.004
p-value | 0.000 0.000 0.000 0.141 0.001
+1 | 0.024 0.003 -0.004 -0.008 -0.007
p-value | 0.000 0.019 0.000 0.000 0.000
+SD | 0.074 0.008 -0.013 -0.024 -0.021
p-value | 0.000 0.066 0.000 0.000 0.000
Range | 0.399 0.109 0.007 -0.100 -0.139
p-value | 0.000 0.000 0.728 0.000 0.000
Marginal | 0.024 0.004 -0.003 -0.008 -0.007
p-value | 0.000 0.009 0.000 0.000 0.000
Average predictions
| 0 1 2 3 4



We can also use mgen to make all kinds of graphs for predicted rates and probabilities of counts
and changes in these, like we did for regular Poisson.

We can also adjust our final, best-fitting model to exposure time:

inflate (sex married sibs born educ)

zip childs sex married sibs

exposure (reprage)
(31 missing values generated)

Zero-inflated poisson regression

born educ,

Number of obs
Nonzero obs
Zero obs

LR chi2 (5)
Prob > chi2

Interval]

.1300842
.10178
.0302181
.0077996
-.0311901
-1.784405

Inflation model = logit
Log likelihood = -4334.455
childs | Coef Std. Err
_____________ +
childs |
sex | .0673734 .0319959
married | .0372361 .0329312
sibs | .0213414 .004529
born | -.099738 .0548672
educ | -.04122 .0051174
~cons | -1.996286 .1081046
reprage | (exposure)
_____________ +
inflate |
sex | -1.258563 .1789565
married | -7.69451 37.75966
sibs | -.0533748 .0340675
born | .3318979 .3383992
educ | .1963433 .0342241
_cons | -1.914812 .6732486

z P>|z| [95% Conf.
11 0.035 .0046625
13 0.258 -.0273079
.71 0.000 .0124647
82 0.069 -.2072757
05 0.000 -.0512498
47 0.000 -2.208167
03 0.000 -1.609311
20 0.839 -81.70207
57 0.117 -.1201459
98 0.327 -.3313523
.74 0.000 .1292652
.84 0.004 -3.234355

-.9078144
66.31305
.0133964
.9951481
.2634213

-.5952693

Note that the model changed — marriage that seemed so important is no longer significant, and
neither is foreign born status! Looks like the effects of those were just function of age. Gender,
siblings, and education predict the count, and gender and education predict the membership in

always zero group.

Let’s use fitstat to see whether this model with exposure performs better than the model without:
. quietly fitstat,

save

. quietly zip childs sex married sibs

born educ)

Note: Here we limit the model without exposure only to those who don’t miss data on reprage

variable.

fitstat,

diff

Log-likelihoo

d

Model

Intercept-only

Chi-square

D (df=2722/2722/0)

LR

(df=10/10/0)

p-value

Current

—_—t —— — — 4+ — — — + —

born educ if reprage~=.,

Saved Difference
-4334.455 -175.121
-4825.719 0.000

8668.911 350.243
982.528 -350.243
0.000

inflate (sex married sibs
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McFadden | 0.0606 0.102 -0.036

McFadden (adjusted) | 0.063 0.099 -0.036
Cox-Snell/ML | 0.206 0.302 -0.095
Cragg-Uhler/Nagelkerke | 0.213 0.311 -0.098
_________________________ +_______________________________________

e |

AIC | 9043.153 8692.911 350.243

AIC divided by N | 3.308 3.180 0.128

BIC (df=12/12/0) | 9114.116 8763.873 350.243

Difference of 350.243 in BIC provides very strong support for saved model.

We can see very strong support for the model with exposure, so we would select it as our final one.

Diagnostics for zero-inflated models:

Unfortunately, many tests and work-around solutions that worked for nbreg and poisson don’t
work for zip and zinb. One big problem is that zip and zinb cannot be modeled using GLM. We
can still test for multicollinearity and use robust option for robust SE, but linearity diagnostics and
those used to identify outliers and leverage points are not available here. So the strategy to use is:

1. Do the diagnostics using regular poisson or nbreg and then see if suggested fixes (e.g., a
transformation or omitted leverage points) appear to improve the corresponding zero-
inflated model.

2. Generate a dichotomy for 0 vs non-zero, run logit for that, and do diagnostics for logit as
well (that would approximate the “Always zero” equation of ZIP and ZINB, and it is
possible, for example, for a nonlinear relationship to exist in predicting counts but not
predicting zeroes, or other way around).

Zero-truncated models

Sometimes we have count data that have no zeros at all, because we only start accumulating data
once at least one count was observed. For example, the length of hospital stay cannot be 0 because
we only start observing counts once a person is admitted. In such cases, zero-truncated models,
implemented by ztp and ztnb commands, are useful. E.g., say, we only have data on the number of
children after the person has their first one:

. gen childsO=childs

(5 missing values generated)

. replace childsO=. if childs==

(799 real changes made, 799 to missing)

. ztp childsO sex married sibs born educ

Zero-truncated Poisson regression Number of obs = 1951
LR chi2 (5) = 168.39

Prob > chi2 = 0.0000

Log likelihood = -3129.8812 Pseudo R2 = 0.0262
childsO | Coef. sStd. Err. Z P> z| [95% Conf. Interval]
_____________ +________________________________________________________________
sex | .0050533 .0341538 0.15 0.882 -.061887 .0719936

married | .0439347 .0344268 1.28 0.202 -.0235405 .11141

sibs | .0283134 .0047432 5.97 0.000 .019017 .0376098

born | -.1934924 .0631899 -3.06 0.002 -.3173423 -.0696426

educ | -.0403873 .0055964 -7.22 0.000 -.0513561 -.0294186

cons | 1.406071 .1183233 11.88 0.000 1.174161 1.63798
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ztnb childs0 sex married sibs born educ

Zero-truncated negative binomial regression Number of obs = 1951
LR chi2 (5) = 114.29

Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -3128.9162 Pseudo R2 = 0.0179
childsO | Coef. std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
sex | .0043327 .0352032 0.12 0.902 -.0646644 .0733297

married | .0440371 .0354945 1.24 0.215 -.0255309 .1136051

sibs | .0285975 .0049392 5.79 0.000 .0189169 .0382781

born | -.1951289 .0649357 -3.00 0.003 -.3224005 -.0678573

educ | -.0403866 .0057732 -7.00 0.000 -.0517018 -.0290714

_cons | 1.398945 .1221116 11.46 0.000 1.15961 1.638279
_____________ +________________________________________________________________
/lnalpha | -3.811634 7616972 -5.304533 -2.318735
_____________ +________________________________________________________________
alpha | .022112 0168427 .004969 .098398
Likelihood-ratio test of alpha=0: chibar2 (01) = 1.93 Prob>=chibar2 = 0.082

Note that the results of these models look very similar to those from the count equations of zero-
inflated Poisson and zero-inflated NB models.



