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Sociology 7704: Regression Models for Categorical Data 

Instructor: Natalia Sarkisian 

 

Ordered Logit 

 

When the outcome variable is categorical but not binary – that is, either an ordinal variable or a 

nominal one with more than 2 categories—we can also use logit models, but need to modify them.   

 

If your dependent variable has ordered categories (i.e. the order of categories is meaningful but the 

distances between them are arbitrary), you can use ordered logit.  For some variables, the order is 

much clearer than for others, but always exercise caution and think whether this is the only order 

possible or whether another one might make sense as well.  

 

It is inappropriate to use OLS for ordinal dependent variables – OLS assumes that the distances 

between categories are the same – e.g. the distance from “strongly agree” and “agree” equals to that 

from “agree” to “neither agree nor disagree”, but in most cases we can’t make that assumption. 

This is what OLS does if used with ordinal variables: 

 
 

It is clear from this picture that if we changed intervals and decided that the distances are not all 

equal, that would change the slope.  To avoid this problem, we can use ordered logit.  It is based on 

the idea of a latent dependent variable, which we can only observe as a set of categories – but in 

fact, it is a continuous variable.  E.g. even if we ask people’s opinion on abortion in discreet 

categories, the most accurate representation of their views would be to position them somewhere on 

the continuum of support for abortion. 

 

So we assume a latent dependent variable, and it is divided into intervals – those are categories we 

actually observe: 
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Then, our regression model of latent Y on X is assumed to look like this (you can see how the 

categories are mapped onto the latent variable – they are not equal).  

 
 

This is one interpretation of ordered logit model.  Another one is that it combines a set of binary 

logits by constraining them to be the same equation.  We could estimate binary logit models for 

each category to predict probability of belonging to that group or any group below it.  We could 

then require all of these logits to have the same slopes and we could estimate them simultaneously 

– the result is the ordered logit model.  To understand why they have to be the same (this is called 

parallel slopes assumption), we can return to our latent Y model – the slope of the line is the same 

across all categories – for the entire span of the latent variable.  That is how this assumption looks 

when we examine probabilities: 

 

 
 

Now, let’s run ordered logit model in Stata.  I selected a variable that evaluates opinions on 

governmental spending on national defense: 
 

. tab natarmsy  

   national | 

 defense -- | 

  version y |      Freq.     Percent        Cum. 

------------+----------------------------------- 

 too little |        477       35.39       35.39 

about right |        591       43.84       79.23 
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   too much |        280       20.77      100.00 

------------+----------------------------------- 

      Total |      1,348      100.00 

. ologit natarmsy age sex childs educ born 

Iteration 0:   log likelihood = -1410.9409 

Iteration 1:   log likelihood = -1391.9261 

Iteration 2:   log likelihood =  -1391.882 

Iteration 3:   log likelihood =  -1391.882 

Ordered logit estimates                           Number of obs   =       1337 

                                                  LR chi2(5)      =      38.12 

                                                  Prob > chi2     =     0.0000 

Log likelihood =  -1391.882                       Pseudo R2       =     0.0135 

------------------------------------------------------------------------------ 

    natarmsy |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |  -.0111591   .0032866    -3.40   0.001    -.0176007   -.0047176 

         sex |   .1686415   .1034603     1.63   0.103     -.034137      .37142 

      childs |   .0095746   .0347702     0.28   0.783    -.0585737    .0777229 

        educ |   .0326995   .0174081     1.88   0.060    -.0014198    .0668188 

        born |   .7142956   .1829363     3.90   0.000     .3557471    1.072844 

-------------+---------------------------------------------------------------- 

       _cut1 |   .3558196   .3847395          (Ancillary parameters) 

       _cut2 |   2.341709   .3908546  

------------------------------------------------------------------------------ 

 

Measures of Fit: 

Measures of fit for ordered logit models can be obtained using fitstat. Simulations indicate that 

McKelvey and Zavoina’s R squared most closely approximate the R squared obtained by fitting 

OLS using the underlying latent variable, so this measure of R2 is the most appropriate. To choose 

the best-fitting model, we can do hypotheses tests using test and lrtest as well as use BIC 

comparisons.  

 

Interpretation:  

 

1. Coefficients and Odds Ratios 

The output looks almost like the binary logit output – except for the cutoff values on the bottom – 

those are the values of latent Y which we used to create categories – those values used to cut up our 

imaginary Y (opposition to defense expenditures – larger number means more opposed) to get the 

observed three categories.  

 

We focus our interpretation on coefficients – and we can interpret them the same way as we 

interpreted binary logit coefficients. So we can interpret the sign and the significance but not the 

size.  We find that age decreases opposition to defense expenditures, and being foreign born 

increases such opposition.  Education is only significant on .1 level and increases such opposition 

as well.   

 

One type of interpretation of results that works exclusively for ordered logit (it doesn’t exist for 

either binary or multinomial logit) is the interpretation of Y-standardized and fully standardized 

coefficients as the change (measured in standard deviations) in latent Y variable per unit of X or 

per standard deviation of X: 
. listcoef, std 

ologit (N=1337): Unstandardized and Standardized Estimates  

 Observed SD: .73511836 

   Latent SD: 1.8407959 

------------------------------------------------------------------------------- 

    natarmsy |      b         z     P>|z|    bStdX    bStdY   bStdXY      SDofX 

-------------+----------------------------------------------------------------- 

         age |  -0.01116   -3.395   0.001  -0.1941  -0.0061  -0.1055    17.3958 

         sex |   0.16864    1.630   0.103   0.0840   0.0916   0.0456     0.4981 

      childs |   0.00957    0.275   0.783   0.0163   0.0052   0.0088     1.6975 

        educ |   0.03270    1.878   0.060   0.0995   0.0178   0.0540     3.0423 
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        born |   0.71430    3.905   0.000   0.1972   0.3880   0.1071     0.2760 

 

So one year increase in age decreases the latent Y (opposition to defense expenditures) by .006 

standard deviations, and one standard deviation increase in age (which is 17.4 years) decreases the 

opposition to defense expenditures by .1055 standard deviations. 

  

All other types of interpretation of results are very similar to binary logit.  The only complication 

here is that we have multiple groups, so we will have to be careful about that.  So for example we 

can obtain odds ratios: 
 

. ologit natarmsy age sex childs educ born, or 

Ordered logit estimates                           Number of obs   =       1337 

                                                  LR chi2(5)      =      38.12 

                                                  Prob > chi2     =     0.0000 

Log likelihood =  -1391.882                       Pseudo R2       =     0.0135 

------------------------------------------------------------------------------ 

    natarmsy | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |   .9889029   .0032501    -3.40   0.001     .9825533    .9952935 

         sex |   1.183696   .1224655     1.63   0.103     .9664391    1.449792 

      childs |   1.009621   .0351047     0.28   0.783     .9431087    1.080823 

        educ |    1.03324   .0179868     1.88   0.060     .9985812    1.069102 

        born |   2.042747   .3736925     3.90   0.000     1.427247    2.923683 

------------------------------------------------------------------------------ 

We can also use listcoef with various options the same way as for binary. 

These are cumulative odds of belonging to a certain category or higher versus belonging to one of 

the lower categories.  So we can say that the odds of thinking that we spend too much versus 

thinking that we spend about right or too little are 2 times higher for those who are foreign born. 

Similarly, the odds of thinking that we spend about right or too much versus that we spend too little 

are also twice as high for foreign born people as they are for American born.  

 

To better understand what these are, let’s calculate odds and odds ratios: 
. tab natarmsy born 

   national |  was r born in this 

 defense -- |        country 

  version y |       yes         no |     Total 

------------+----------------------+---------- 

 too little |       456         21 |       477  

about right |       533         57 |       590  

   too much |       244         34 |       278  

------------+----------------------+---------- 

      Total |     1,233        112 |     1,345  

. di (533+244)/456 

1.7039474 

*odds of saying about right or too much for native born (without any controls) 

. di (57+34)/21 

4.3333333 

*odds for saying about right or too much for foreign born 

*Odds ratio:  

. di 4.3333333/1.7039474 

2.5431145 

Alternatively: 

. di 244/(533+456) 

.24671385 

*odds of saying too much for native born 

. di 34/(57+21) 

.43589744 

*odds of saying too much for foreign born 

*Odds ratio: 

. di .43589744/.24671385 

1.7668138 
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Note that the odds ratio for born in the ologit output is approximately in the middle between these 

two values: 1.7668138 +2.5431145)/2 = 2.1549642. That’s because ologit assumes that these two 

odds ratios are essentially the same and thus uses the average. That’s the parallel slopes assumption 

in action. So we are assuming these two odds ratios are the same – if they differ significantly, the 

assumption is violated. We’ll learn how to test that later.  
 

2. Predicted Probabilities. 
 

Further, we can examine predicted probabilities the same way as for binary logit – but, now we will 

always have sets of predicted probabilities – reflecting the number of categories. 
. qui ologit natarmsy age sex childs educ born 

. predict p1 p2 p3 

(option p assumed; predicted probabilities) 

(26 missing values generated) 

. dotplot p1 p2 p3 

.1
.2

.3
.4

.5
.6

Pr(natarmsy==1) Pr(natarmsy==2) Pr(natarmsy==3)

 
. mtable, atmeans 

Expression: Pr(natarmsy), predict(outcome()) 

 

too_little  about_right  too_much 

--------------------------------- 

     0.351        0.447     0.203 

 

Specified values of covariates 

           |      age       sex    childs      educ      born 

 ----------+------------------------------------------------- 

   Current |     46.4      1.55      1.85      13.4      1.08 

 

So for all average values, the probability of thinking that we spend too little is 35%, about right – 

45%, and too much – 20%. That corresponds to the original distribution (see p.3). Again, we can 

select specific values of independent variables to get meaningful results using prvalue.  We can also 

get tables of predicted probabilities: 
. mtable, at(sex=(1 2) born=(1 2)) 

Expression: Pr(natarmsy), predict(outcome()) 

           |      sex      born  too_little  about_right  too_much 

 ----------+------------------------------------------------------ 

         1 |        1         1       0.387        0.431     0.181 

         2 |        1         2       0.238        0.452     0.310 

         3 |        2         1       0.348        0.444     0.208 

         4 |        2         2       0.209        0.444     0.347 

 

Specified values where .n indicates no values specified with at() 

           |  No at() 

 ----------+--------- 

   Current |       .n 
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And we can create graphs of predicted probabilities as well as cumulative predicted probabilities. 

Focusing on native born men: 
 

. mgen, at(age=(20(10)80) sex=1 born=1) atmeans noatlegend  stub(ouX_) 

Predictions from: margins, at(age=(20(10)80) sex=1 born=1) atmeans noatlegend 

predict(outcome()) 

 

Variable   Obs Unique      Mean       Min       Max  Label 

---------------------------------------------------------------------------------------- 

ouX_pr1      7      7  .3968975  .3190138  .4778247  pr(y=too little) from margins 

ouX_ll1      7      7   .348889  .2670982  .4121904  95% lower limit 

ouX_ul1      7      7   .444906  .3709294  .5434591  95% upper limit 

ouX_age      7      7        50        20        80  age of respondent 

ouX_Cpr1     7      7  .3968975  .3190138  .4778247  pr(y<=too little) 

ouX_pr2      7      7  .4274745  .3917417  .4543813  pr(y=about right) from margins 

ouX_ll2      7      7  .3960684  .3509772  .4254997  95% lower limit 

ouX_ul2      7      7  .4588805  .4325061  .4832629  95% upper limit 

ouX_Cpr2     7      7   .824372  .7733951  .8695664  pr(y<=about right) 

ouX_pr3      7      7   .175628  .1304336  .2266049  pr(y=too much) from margins 

ouX_ll3      7      7  .1441333   .098138  .1835072  95% lower limit 

ouX_ul3      7      7  .2071228  .1627293  .2697026  95% upper limit 

ouX_Cpr3     7      2         1  .9999999         1  pr(y<=too much) 

---------------------------------------------------------------------------------------- 

 

Specified values of covariates 

      sex     childs       educ       born  

------------------------------------------- 

        1   1.854899   13.35228          1  

 

. lab var ouX_pr1 "Too little"  

. lab var ouX_pr2 "About right" 

. lab var ouX_pr3 "Too much" 

 

. graph twoway (line ouX_pr1 ouX_pr2 ouX_pr3 ouX_age, sort lpattern(solid dash longdash) 

ytitle("Predicted probability")) 
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Note that the fact that slopes go in different directions is normal – as probability of being in one 

category increases, the probability of being in another category decreases. We can also graph 

cumulative probabilities – these should be parallel (reflects the assumption of parallel slopes): 
. graph twoway (line ouX_Cpr1 ouX_Cpr2 ouX_Cpr3 ouX_age, sort lpattern(solid dash 

longdash) ytitle("Predicted probability")) 
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In interpreting this graph, we focus on the distances between the lines rather than the lines 

themselves – your book shows how you can shade the areas to focus on areas rather than lines – 

e.g., p.363). By the way, the lines don’t look parallel because the curves are positioned differently 

along X axis: 

 
 

Graphs of predicted probabilities can also be very useful to illustrate curvilinear relationships and 

interactions. For example:  
. sum educ 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

        educ |      2753    13.36397    2.973924          0         20 

 

. gen educm=educ-r(mean) 

(12 missing values generated) 

 

. ologit natarmsy age sex childs born c.educm##c.educm 

 

Iteration 0:   log likelihood = -1410.9409   

Iteration 1:   log likelihood = -1387.3048   

Iteration 2:   log likelihood = -1387.2381   

Iteration 3:   log likelihood = -1387.2381   
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Ordered logistic regression                       Number of obs   =       1337 

                                                  LR chi2(6)      =      47.41 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -1387.2381                       Pseudo R2       =     0.0168 

 

--------------------------------------------------------------------------------- 

       natarmsy |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

----------------+---------------------------------------------------------------- 

            age |  -.0124031   .0033202    -3.74   0.000    -.0189106   -.0058955 

            sex |   .1785567   .1036235     1.72   0.085    -.0245415     .381655 

         childs |    .003951   .0348873     0.11   0.910    -.0644269     .072329 

           born |   .6292186    .185014     3.40   0.001     .2665979    .9918393 

          educm |   .0485421   .0181214     2.68   0.007     .0130248    .0840593 

                | 

c.educm#c.educm |   .0086708   .0028482     3.04   0.002     .0030884    .0142531 

----------------+---------------------------------------------------------------- 

          /cut1 |  -.1498701   .3016316                     -.7410572     .441317 

          /cut2 |   1.847077    .306773                      1.245813    2.448341 

--------------------------------------------------------------------------------- 

 

. sum educ educm 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

        educ |      2753    13.36397    2.973924          0         20 

       educm |      2753    4.04e-08    2.973924  -13.36397   6.636034 

 

. mgen, at(educm=( -13.36397 -11.36397 -9.36397 -7.36397 -5.36397   -3.36397  -1.36397 

0.636034 2.636034 4.636034 6.636034)) atmeans noatlegend stub(ed_) 

 

Predictions from: margins, at(educm=( -13.36397 -11.36397 -9.36397 -7.36397 -5.36397 -

3.36397 -1.36397 0.636034 2.636034 4.636034 6.636034)) atmeans noatlegend 

predict(outcome()) 

 

Variable   Obs Unique       Mean        Min       Max  Label 

---------------------------------------------------------------------------------------- 

ed_pr1      11     11   .3096088   .1916314  .3835692  pr(y=too little) from margins 

ed_ll1      11     11   .2424792   .0467361  .3488882  95% lower limit 

ed_ul1      11     11   .3767383   .2878621  .4221345  95% upper limit 

ed_educm    11     11  -3.363968  -13.36397  6.636034  educm 

ed_Cpr1     11     11   .3096088   .1916314  .3835692  pr(y<=too little) 

ed_pr2      11     11   .4500595   .4373403  .4613122  pr(y=about right) from margins 

ed_ll2      11     11   .4162284   .3683599  .4333181  95% lower limit 

ed_ul2      11     11   .4838905    .465871  .5201265  95% upper limit 

ed_Cpr2     11     11   .7596682   .6358746  .8209095  pr(y<=about right) 

ed_pr3      11     11   .2403318   .1790905  .3641254  pr(y=too much) from margins 

ed_ll3      11     11   .1713362   .1482769  .2407904  95% lower limit 

ed_ul3      11     11   .3093274   .2044827  .5799741  95% upper limit 

ed_Cpr3     11      2          1   .9999999         1  pr(y<=too much) 

---------------------------------------------------------------------------------------- 

 

Specified values of covariates 

      age        sex     childs       born  

------------------------------------------- 

 46.36799   1.545999   1.854899   1.083022  46.36799   1.545999   1.854899   1.083022 

 

. gen ed_educ=ed_educm+13.36397 

(2754 missing values generated) 

 

. lab var ed_educ "Respondent's Education" 

 

. graph twoway (line ed_pr1 ed_pr2 ed_pr3 ed_educ, sort lpattern(solid dash longdash) 

ytitle("Predicted probability")) 
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3. Changes in Probabilities. 

 

Similar to binary logit, we can examine discrete and marginal changes in probabilities using 

margins and mchange commands.  But here again, we will get changes for each outcome 

individually: 
. qui ologit natarmsy age i.sex childs educ i.born 

 

. mchange, amount(all) 

 

ologit: Changes in Pr(y) | Number of obs = 1337 

 

Expression: Pr(natarmsy), predict(outcome()) 

 

                | too lit~e  about r~t   too much  

----------------+--------------------------------- 

age             |                                  

         0 to 1 |     0.002      0.000     -0.002  

        p-value |     0.965      0.973      0.966  

             +1 |     0.003     -0.001     -0.002  

        p-value |     0.001      0.002      0.001  

            +SD |     0.045     -0.015     -0.030  

        p-value |     0.001      0.005      0.000  

          Range |     0.181     -0.059     -0.122  

        p-value |     0.001      0.003      0.000  

       Marginal |     0.003     -0.001     -0.002  

        p-value |     0.001      0.001      0.001  

sex             |                                  

 female vs male |    -0.038      0.011      0.027  

        p-value |     0.103      0.117      0.102  

childs          |                                  

         0 to 1 |    -0.002      0.001      0.002  

        p-value |     0.784      0.789      0.781  

             +1 |    -0.002      0.001      0.002  

        p-value |     0.783      0.781      0.784  

            +SD |    -0.004      0.001      0.003  

        p-value |     0.783      0.779      0.784  

          Range |    -0.017      0.005      0.012  

        p-value |     0.782      0.771      0.785  

       Marginal |    -0.002      0.001      0.002  
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        p-value |     0.783      0.783      0.783  

educ            |                                  

         0 to 1 |    -0.008      0.004      0.004  

        p-value |     0.070      0.175      0.008  

             +1 |    -0.007      0.002      0.005  

        p-value |     0.058      0.056      0.063  

            +SD |    -0.022      0.005      0.016  

        p-value |     0.056      0.035      0.068  

          Range |    -0.150      0.051      0.099  

        p-value |     0.063      0.110      0.045  

       Marginal |    -0.007      0.002      0.005  

        p-value |     0.059      0.065      0.061  

born            |                                  

      no vs yes |    -0.144      0.009      0.135  

        p-value |     0.000      0.305      0.001  

 

Average predictions 

 

             | too lit~e  about r~t   too much  

-------------+--------------------------------- 

  Pr(y|base) |     0.354      0.439      0.207 

 

. mchange, amount(sd) brief 

 

ologit: Changes in Pr(y) | Number of obs = 1337 

 

Expression: Pr(natarmsy), predict(outcome()) 

 

                | too lit~e  about r~t   too much  

----------------+--------------------------------- 

age             |                                  

            +SD |     0.045     -0.015     -0.030  

        p-value |     0.001      0.005      0.000  

sex             |                                  

 female vs male |    -0.038      0.011      0.027  

        p-value |     0.103      0.117      0.102  

childs          |                                  

            +SD |    -0.004      0.001      0.003  

        p-value |     0.783      0.779      0.784  

born            |                                  

      no vs yes |    -0.144      0.009      0.135  

        p-value |     0.000      0.305      0.001  

educ            |                                  

            +SD |    -0.022      0.005      0.016  

        p-value |     0.056      0.035      0.068  

 

. mchangeplot, symbols(L R M) sig(.05) 
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Diagnostics 

 

1. Parallel slopes assumption 

We discussed the parallel regression assumption (assumption that probability curves are parallel).  

Now we will learn to test it.  This is crucial – if it does not hold, we should use other models (e.g., 

multinomial logit or generalized ologit). The command we use here is part of Long and Freese’s 

package we installed earlier.  
. brant, detail 

Estimated coefficients from binary logits 

------------------------------------ 

    Variable |  y_gt_1     y_gt_2    

-------------+---------------------- 

         age |   -0.009     -0.016   

             |    -2.58      -3.42   

             | 

         sex | 

     female  |    0.206      0.125   

             |     1.77       0.90   

             | 

      childs |    0.016     -0.004   

             |     0.40      -0.09   

        educ |    0.024      0.052   

             |     1.20       2.16   

             | 

        born | 

         no  |    0.964      0.510   

             |     3.77       2.31   

             | 

       _cons |    0.520     -1.444   

             |     1.59      -3.68   

------------------------------------ 

                         legend: b/t 

 

Brant test of parallel regression assumption 

 

              |       chi2     p>chi2      df 
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 -------------+------------------------------ 

          All |       7.37      0.194       5 

 -------------+------------------------------ 

          age |       1.81      0.178       1 

        2.sex |       0.32      0.573       1 

       childs |       0.15      0.694       1 

         educ |       1.28      0.258       1 

       2.born |       2.60      0.107       1 

 

A significant test statistic provides evidence that the parallel 

regression assumption has been violated. 

 

We interpret probability values – if the overall probability is less than chosen cutoff (e.g., .05), that 

we reject the assumption of parallel slopes and cannot use ordered logit model.  We also get 

information on individual variables – that way we can see for which variables slopes are not 

parallel and consider respecifying the model in some fashion. In this case, none of the variables 

presents a problem. If the assumption is violated and we cannot respecify the model or recode the 

variables to avoid the problem, we have three options – to use a generalized ordered logit model, a 

stereotype logit model, or a multinomial logit model. Let’s see an example where parallel slopes 

assumption is violated: 
 

. codebook natfare 

--------------------------------------------------------------------------------natfare                                                                                                             

welfare 

-------------------------------------------------------------------------------- 

                  type:  numeric (byte) 

                 label:  natfare 

 

                 range:  [1,3]                        units:  1 

         unique values:  3                        missing .:  1451/2765 

            tabulation:  Freq.   Numeric  Label 

                           279         1  too little 

                           502         2  about right 

                           533         3  too much 

                          1451         .   

 

. ologit  natfare age sex childs educ born 

Ordered logistic regression                       Number of obs   =       1306 

                                                  LR chi2(5)      =      13.40 

                                                  Prob > chi2     =     0.0199 

Log likelihood = -1379.0767                       Pseudo R2       =     0.0048 

------------------------------------------------------------------------------ 

     natfare |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |  -.0043618   .0033169    -1.32   0.189    -.0108629    .0021392 

         sex |  -.0658052   .1042275    -0.63   0.528    -.2700873    .1384769 

      childs |   -.054537   .0346097    -1.58   0.115    -.1223708    .0132967 

        educ |   .0075963   .0181499     0.42   0.676    -.0279769    .0431695 

        born |  -.4227496   .1761635    -2.40   0.016    -.7680237   -.0774754 

-------------+---------------------------------------------------------------- 

       /cut1 |  -2.094474   .3990914                     -2.876679   -1.312269 

       /cut2 |  -.3762581   .3944567                     -1.149379    .3968628 

------------------------------------------------------------------------------ 

 

. brant, detail 

 

Estimated coefficients from binary logits 

 

------------------------------------ 

    Variable |  y_gt_1     y_gt_2    

-------------+---------------------- 

         age |    0.001     -0.007   

             |     0.13      -1.89   

         sex |   -0.135     -0.037   

             |    -0.97      -0.33   

      childs |   -0.080     -0.037   

             |    -1.81      -0.97   
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        educ |    0.057     -0.021   

             |     2.38      -1.04   

        born |   -0.507     -0.340   

             |    -2.40      -1.72   

       _cons |    1.461      0.715   

             |     2.83       1.63   

------------------------------------ 

                         legend: b/t 

 

Brant test of parallel regression assumption 

 

              |       chi2     p>chi2      df 

 -------------+------------------------------ 

          All |      15.76      0.008       5 

 -------------+------------------------------ 

          age |       2.93      0.087       1 

          sex |       0.50      0.478       1 

       childs |       0.96      0.328       1 

         educ |      11.03      0.001       1 

         born |       0.62      0.432       1 

 

A significant test statistic provides evidence that the parallel 

regression assumption has been violated. 

 

The overall assumption is violated, and more specifically, the assumption is violated for education. 

Here we’ll discuss generalized ordered logit as an alternative model; the other alternatives will be 

discussed later.  

 

Generalized Ordered Logit 

 

Let’s estimate a generalized ordered logit model. We need a gologit2 command which is user-

written.  We find it by finding and installing the package: 
. net search gologit2 

 

Installing gologit2 from http://fmwww.bc.edu/RePEc/bocode/g 
 

. gologit2 natfare age sex childs educ born 

Generalized Ordered Logit Estimates               Number of obs   =       1306 

                                                  LR chi2(10)     =      28.65 

                                                  Prob > chi2     =     0.0014 

Log likelihood = -1371.4507                       Pseudo R2       =     0.0103 

------------------------------------------------------------------------------ 

     natfare |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

too_little   | 

         age |   .0004908   .0043505     0.11   0.910     -.008036    .0090176 

         sex |  -.1339589   .1390404    -0.96   0.335    -.4064732    .1385553 

      childs |  -.0849995   .0444353    -1.91   0.056    -.1720911    .0020921 

        educ |   .0528277   .0230162     2.30   0.022     .0077168    .0979386 

        born |  -.5331761   .2097069    -2.54   0.011    -.9441941   -.1221582 

       _cons |   1.561235   .5049273     3.09   0.002      .571596    2.550874 

-------------+---------------------------------------------------------------- 

about_right  | 

         age |  -.0069425   .0036582    -1.90   0.058    -.0141124    .0002275 

         sex |  -.0413382   .1145167    -0.36   0.718    -.2657868    .1831103 

      childs |   -.034073    .038231    -0.89   0.373    -.1090044    .0408584 

        educ |  -.0203868   .0200331    -1.02   0.309    -.0596509    .0188774 

        born |  -.3546384   .1975892    -1.79   0.073    -.7419061    .0326293 

       _cons |   .7233665   .4381509     1.65   0.099    -.1353934    1.582126 

------------------------------------------------------------------------------ 

This estimates the two models separately, the same way brant test did. We could do a similar test 

by comparing the two equations: 
 

. test [too_little=about_right] 

 

 ( 1)  [too_little]age - [about_right]age = 0 
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 ( 2)  [too_little]sex - [about_right]sex = 0 

 ( 3)  [too_little]childs - [about_right]childs = 0 

 ( 4)  [too_little]educ - [about_right]educ = 0 

 ( 5)  [too_little]born - [about_right]born = 0 

 

           chi2(  5) =   16.34 

         Prob > chi2 =    0.0059 

 

Now, let’s make use of some more advanced options: 
. gologit2  natfare age sex childs educ born, autofit gamma 

------------------------------------------------------------------------------ 

Testing parallel lines assumption using the .05 level of significance... 

Step  1:  sex meets the pl assumption (P Value = 0.5024) 

Step  2:  born meets the pl assumption (P Value = 0.3904) 

Step  3:  childs meets the pl assumption (P Value = 0.2221) 

Step  4:  age meets the pl assumption (P Value = 0.1549) 

Step  5:  The following variables do not meet the pl assumption: 

          educ (P Value = 0.00082) 

Wald test of parallel lines assumption for the final model: 

 ( 1)  [too little]sex - [about right]sex = 0 

 ( 2)  [too little]born - [about right]born = 0 

 ( 3)  [too little]childs - [about right]childs = 0 

 ( 4)  [too little]age - [about right]age = 0 

           chi2(  4) =    4.63 

         Prob > chi2 =    0.3272 

An insignificant test statistic indicates that the final model 

does not violate the proportional odds/ parallel lines assumption 

 

If you re-estimate this exact same model with gologit2, instead  

of autofit you can save time by using the parameter 

pl(sex born childs age) 

------------------------------------------------------------------------------ 

Generalized Ordered Logit Estimates               Number of obs   =       1306 

                                                  Wald chi2(6)    =      24.41 

                                                  Prob > chi2     =     0.0004 

Log likelihood =  -1373.774                       Pseudo R2       =     0.0087 

 ( 1)  [too little]sex - [about right]sex = 0 

 ( 2)  [too little]born - [about right]born = 0 

 ( 3)  [too little]childs - [about right]childs = 0 

 ( 4)  [too little]age - [about right]age = 0 

------------------------------------------------------------------------------ 

     natfare |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

too little   | 

         age |  -.0043832   .0033113    -1.32   0.186    -.0108732    .0021068 

         sex |  -.0702248   .1044244    -0.67   0.501    -.2748929    .1344433 

      childs |  -.0514524   .0345432    -1.49   0.136    -.1191558     .016251 

        educ |   .0533867    .022804     2.34   0.019     .0086916    .0980818 

        born |  -.4252105   .1766018    -2.41   0.016    -.7713436   -.0790774 

       _cons |   1.496639   .4354585     3.44   0.001      .643156    2.350122 

-------------+---------------------------------------------------------------- 

about right  | 

         age |  -.0043832   .0033113    -1.32   0.186    -.0108732    .0021068 

         sex |  -.0702248   .1044244    -0.67   0.501    -.2748929    .1344433 

      childs |  -.0514524   .0345432    -1.49   0.136    -.1191558     .016251 

        educ |  -.0206651   .0200009    -1.03   0.302    -.0598661    .0185359 

        born |  -.4252105   .1766018    -2.41   0.016    -.7713436   -.0790774 

       _cons |   .7614398   .4118299     1.85   0.064    -.0457319    1.568612 

------------------------------------------------------------------------------ 

Alternative parameterization: Gammas are deviations from proportionality 

------------------------------------------------------------------------------ 

     natfare |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

Beta         | 

         age |  -.0043832   .0033113    -1.32   0.186    -.0108732    .0021068 

         sex |  -.0702248   .1044244    -0.67   0.501    -.2748929    .1344433 

      childs |  -.0514524   .0345432    -1.49   0.136    -.1191558     .016251 

        educ |   .0533867    .022804     2.34   0.019     .0086916    .0980818 

        born |  -.4252105   .1766018    -2.41   0.016    -.7713436   -.0790774 
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-------------+---------------------------------------------------------------- 

Gamma_2      | 

        educ |  -.0740518    .022142    -3.34   0.001    -.1174493   -.0306543 

-------------+---------------------------------------------------------------- 

Alpha        | 

     _cons_1 |   1.496639   .4354585     3.44   0.001      .643156    2.350122 

     _cons_2 |   .7614398   .4118299     1.85   0.064    -.0457319    1.568612 

------------------------------------------------------------------------------ 

I used autofit model to keep all the coefficients that are not significantly different constrained to be 

equal, and allow only unequal coefficients (here, coefficients for educ) to vary.   

 

Gamma option allows the alternative parametrization which presents coefficients for the first model 

(y>1) and then presents any deviations from that model in other models as gamma coefficients.  So 

here we can see that the only gamma is for education – the coefficient in y>2 model is -.074 smaller 

(and as we can see from the earlier output, the effect of education in that model is, in fact, not 

significant).   We can also use various post-estimation commands with gologit2, like margins, 

mtable, mgen, etc. 

 

2. Multicollinearity. 

As was the case for binary logit, we can test for multicollinearity by running OLS model instead of 

ordered logit and using vif.   

 

3. Linearity and Additivity 

For additivity and the issue of interactions, the story is as complex as for binary logit and the same 

considerations apply. Rely on theory in selecting interactions, and use predicted probabilities and 

discrete changes to examine the results.  

 

As for linearity, as always, we need to start our ordered logit analyses by conducting univariate and 

bivariate examination of the data. For bivariate examination, an ordered variable can be used in two 

ways – you can either use it as if it were continuous (especially if the number of categories is 

relatively high) or you can split it into dichotomies and use logistic-based tools. E.g.: 
.lowess natarmsy age 
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Or you can create dichotomies (note that these are cumulative dichotomies!): 
. gen natarmsy1=(natarmsy>1) if natarmsy~=. 

(1417 missing values generated) 

. gen natarmsy2=(natarmsy>2) if natarmsy~=. 

(1417 missing values generated) 

 

And then we can use lowess, like in binary logit. E.g.: 
. lowess natarmsy1 age 
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. lowess natarmsy2 age 
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Looks like it’s not quite linear and the shape of the relationship might differ for two equations – we 

could introduce age squared and then test parallel slopes.  
. qui sum age 

. gen agem=age-r(mean) 

(14 missing values generated) 

. gen agem2=agem^2 

(14 missing values generated) 
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. gologit2 natarmsy agem agem2 sex childs educ born, autofit 

------------------------------------------------------------------------------ 

Testing parallel lines assumption using the .05 level of significance... 

Step  1:  Constraints for parallel lines imposed for agem (P Value = 0.7961) 

Step  2:  Constraints for parallel lines imposed for educ (P Value = 0.8065) 

Step  3:  Constraints for parallel lines imposed for sex (P Value = 0.7043) 

Step  4:  Constraints for parallel lines imposed for childs (P Value = 0.2648) 

Step  5:  Constraints for parallel lines imposed for born (P Value = 0.1295) 

Step  6:  Constraints for parallel lines are not imposed for  

          agem2 (P Value = 0.00910) 

 

Wald test of parallel lines assumption for the final model: 

 ( 1)  [too_little]agem - [about_right]agem = 0 

 ( 2)  [too_little]educ - [about_right]educ = 0 

 ( 3)  [too_little]sex - [about_right]sex = 0 

 ( 4)  [too_little]childs - [about_right]childs = 0 

 ( 5)  [too_little]born - [about_right]born = 0 

           chi2(  5) =    3.83 

         Prob > chi2 =    0.5744 

 

An insignificant test statistic indicates that the final model 

does not violate the proportional odds/ parallel lines assumption 

 

If you re-estimate this exact same model with gologit2, instead  

of autofit you can save time by using the parameter 

pl(agem educ sex childs born) 

------------------------------------------------------------------------------ 

Generalized Ordered Logit Estimates               Number of obs   =       1337 

                                                  Wald chi2(7)    =      48.66 

                                                  Prob > chi2     =     0.0000 

Log likelihood =  -1385.356                       Pseudo R2       =     0.0181 

 ( 1)  [too_little]agem - [about_right]agem = 0 

 ( 2)  [too_little]educ - [about_right]educ = 0 

 ( 3)  [too_little]sex - [about_right]sex = 0 

 ( 4)  [too_little]childs - [about_right]childs = 0 

 ( 5)  [too_little]born - [about_right]born = 0 

------------------------------------------------------------------------------ 

    natarmsy |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

too_little   | 

        agem |  -.0152224   .0036664    -4.15   0.000    -.0224083   -.0080365 

       agem2 |   .0005836   .0001825     3.20   0.001     .0002259    .0009413 

         sex |   .1554398   .1036979     1.50   0.134    -.0478043    .3586839 

      childs |   .0224146    .035386     0.63   0.526    -.0469407      .09177 

        educ |   .0418801   .0179471     2.33   0.020     .0067044    .0770557 

        born |   .7037078   .1833104     3.84   0.000     .3444259     1.06299 

       _cons |  -1.160804   .3766593    -3.08   0.002    -1.899042   -.4225649 

-------------+---------------------------------------------------------------- 

about_right  | 

        agem |  -.0152224   .0036664    -4.15   0.000    -.0224083   -.0080365 

       agem2 |  -.0000121   .0002272    -0.05   0.958    -.0004574    .0004333 

         sex |   .1554398   .1036979     1.50   0.134    -.0478043    .3586839 

      childs |   .0224146    .035386     0.63   0.526    -.0469407      .09177 

        educ |   .0418801   .0179471     2.33   0.020     .0067044    .0770557 

        born |   .7037078   .1833104     3.84   0.000     .3444259     1.06299 

       _cons |  -2.980485   .3885241    -7.67   0.000    -3.741978   -2.218991 

 

We can see that the square term of age is significant in one equation only.  

Turning to diagnosing linearity in multivariate context, here we need to estimate multiple binary 

models and do the diagnostics separately for them.  
. boxtid logit natarmsy1 age sex childs educ born 

------------------------------------------------------------------------------ 

age      |  -.0104898   .0036217     -2.896   Nonlin. dev. 5.549   (P = 0.018) 

      p1 |  -1.517852   1.362114     -1.114 

------------------------------------------------------------------------------ 

childs   |   .0340214   .0379598      0.896   Nonlin. dev. 0.156   (P = 0.693) 

      p1 |   1.813904   3.115287      0.582 

------------------------------------------------------------------------------ 
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educ     |   .0314742   .0198539      1.585   Nonlin. dev. 7.191   (P = 0.007) 

      p1 |     7.9854   4.681117      1.706 

------------------------------------------------------------------------------ 

 

. boxtid logit natarmsy2 age sex childs educ born 

------------------------------------------------------------------------------ 

age      |   -.015219   .0044118     -3.450   Nonlin. dev. 0.247   (P = 0.619) 

      p1 |   1.586871   1.546701      1.026 

------------------------------------------------------------------------------ 

childs   |  -.0103851   .0476276     -0.218   Nonlin. dev. 2.477   (P = 0.116) 

      p1 |  -46.97068          .          . 

------------------------------------------------------------------------------ 

educ     |   .0466299   .0237333      1.965   Nonlin. dev. 5.772   (P = 0.016) 

      p1 |   7.863133   4.870539      1.614 

------------------------------------------------------------------------------ 

 

Here we also see a nonlinear relationship for age in the first but not the second model. Education 

appears nonlinear in both. 

 

4. Outliers and Influential Observations 

In order to do unusual data diagnostics for ordered logit, we should also rely on separate binary 

models we’ve used in previous steps. So we should obtain residuals and influence statistics from 

them (so all the same methods we discussed for binary logit apply here as well), e.g., getting 

standardized residuals: 

 
. qui logit natarmsy1 age sex childs educ born 

. predict resid1, rs 

(1428 missing values generated) 

. qui logit natarmsy2 age sex childs educ born 

. predict resid2, rs 

(1428 missing values generated) 

 

Note that the fact that you’ll have to do a separate search for unusual data for each binary model 

may complicate things if they suggest that different observations are influential; you’ll have to 

them test the potential effects of these influential observations on your ologit model (rather than 

just on individual binary logits).  
 

5. Error term distribution 

Like we did for binary logit, we can obtain robust standard errors for the ordered logit model in 

order to check whether our assumptions about error distribution hold (compare with the model on 

p.3):  
 

. ologit natarmsy age sex childs educ born, robust 

Iteration 0:   log pseudolikelihood = -1410.9409 

Iteration 1:   log pseudolikelihood = -1391.9261 

Iteration 2:   log pseudolikelihood =  -1391.882 

Iteration 3:   log pseudolikelihood =  -1391.882 

Ordered logistic regression                       Number of obs   =       1337 

                                                  Wald chi2(5)    =      41.23 

                                                  Prob > chi2     =     0.0000 

Log pseudolikelihood =  -1391.882                 Pseudo R2       =     0.0135 

------------------------------------------------------------------------------ 

             |               Robust 

    natarmsy |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |  -.0111591   .0032531    -3.43   0.001    -.0175351   -.0047831 

         sex |   .1686415   .1039126     1.62   0.105    -.0350235    .3723065 

      childs |   .0095746   .0352056     0.27   0.786    -.0594272    .0785763 

        educ |   .0326995   .0172806     1.89   0.058    -.0011699    .0665689 

        born |   .7142956   .1695103     4.21   0.000     .3820615     1.04653 

-------------+---------------------------------------------------------------- 

       /cut1 |   .3558196   .3880631                     -.4047701    1.116409 

       /cut2 |   2.341709   .3944431                      1.568615    3.114803 

------------------------------------------------------------------------------ 


