SOCY7704: Regression Models for Categorical Data
Instructor: Natasha Sarkisian

Poisson Regression
Count variables are often treated as though they are continuous, and OLS is used. OLS in this case
can result in inefficient, inconsistent, and biased estimates. Need to use models that are developed

specifically for count data. Poisson model is the most basic of them.

Poisson distributions:
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Characteristics of Poisson distribution:

LEY)=n

2. The variance equals the mean: Var(y)=E(y)= n -- equidispersion. In practice, the variance is
often larger than p: this is called overdispersion. The main reason for overdispersion is
heterogeneity — if there are different groups within data that have different means and all of them
are actually equal to their variances, when you put all of these groups together, the resulting
combination will have variance larger than the mean. Therefore, we need to control for all those
sources of heterogeneity. Thus, when using Poisson regression, we need to ensure that the
conditional variance equals to the mean — that is Var(y|X)=E(y|X).

3. As pincreases, the probability of zeros decreases. But for many count variables, there are more
observed zeros than would be predicted from Poisson distribution

4. As p increases, the Poisson distribution approximates normal.

5. The assumption of independence of events — past outcomes don’t affect future outcomes.

We usually start by examining the raw distribution and comparing it with Poisson:



tab childs
number of

|
children | Freq Percent Cum
______________ +___________________________________
none | 799 28.95 28.95
one | 469 16.99 45.94
two | 657 23.80 69.75
three | 481 17.43 87.17
four | 185 6.70 93.88
five | 73 2.64 96.52
six | 40 1.45 97.97
seven | 22 0.80 98.77
eight or more | 34 1.23 100.00
______________ +___________________________________
Total | 2,760 100.00
poisson childs
Iteration O: log likelihood = -5096.6865
Iteration 1: log likelihood = -5096.6865
Poisson regression Number of obs = 2760
LR chi2 (0) = 0.00
Prob > chi2 = .
Log likelihood = -5096.6865 Pseudo R2 = 0.0000
childs | Coef. Std. Err. 4 P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
_cons | .5936071 .0141464 41.96 0.000 .5658807 .6213334
mgen, pr(0/8) meanpred stub (poi )
Predictions from:
Variable Obs Unique Mean Min Max Label
poi val 9 9 4 0 8 number of children
poi obeqg 9 9 .1111111 .007971 .2894928 Observed proportion
poi oble 9 9 .7988325 .2894928 1 Observed cum. proportion
poi preqg 9 9 .1110984 .0004684 .2961468 Avg predicted Pr (y=#)
poi prle 9 9 .7988352 .1635711 .9998854 Avg predicted cum. Pr (y=#)
poi ob pr 9 9 .0000127 =-.1262192 .1259216 Observed - Avg Pr (y=#)




Overdispersion results in Poisson distribution underpredicting the outcomes in the two ends of the
distribution — it underpredicts zeros and outcomes of 6 and larger. Fitting this kind of
unconditional Poisson distribution does not take heterogeneity into account — the average number
of children varies according to some characteristics of respondents. Next, we have to allow for
that — need to incorporate the observed heterogeneity. A multivariate Poisson regression model
does just that. It models the average count, p:

n=E(y[x)=exp(Xb)

We exponentiate to force the values to be positive—counts cannot be below 0. We get a nonlinear
model that looks like this:
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Let’s run a multivariate Poisson model:
. poisson childs sex married sibs born educ

Iteration O: log likelihood = -4784.5123
Iteration 1: log likelihood = -4784.5079
Iteration 2: log likelihood = -4784.5079
Poisson regression Number of obs = 2745
LR chi2 (5) = 572.66
Prob > chi2 = 0.0000
Log likelihood = -4784.5079 Pseudo R2 = 0.0565
childs | Coef Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
sex | .195229 .0289993 6.73 0.000 .1383915 .2520665
married | .4486183 .0288777 15.54 0.000 .392019 .5052176
sibs | .0385556 .004219 9.14 0.000 .0302865 .0468246
born | -.2209195 .0522438 -4.23 0.000 -.3233154 -.1185235
educ | -.061697 .0048163 -12.81 0.000 -.0711369 -.0522572
_cons | .9547179 .1010692 9.45 0.000 .7566258 1.15281

Can interpret sign and significance — to interpret the size, we will exponentiate the coefficients —
generating so-called incidence-rate ratios (comparable to odds ratios). But we’ll return to that later.



Model fit, hypothesis testing and model comparisons

Once again, to assess how well our model predicts counts, we can graphically examine the
predicted probabilities for different counts (these are probabilities for someone average on all

characteristics):
. mgen, pr(0/8) meanpred stub (mpoi )
Predictions from:

Variable Obs Unique Mean Min Max Label

mpoi val 9 9 4 0 8 number of children

mpoi obeq 9 9 1111111 .0080146 .2892532 Observed proportion

mpoi oble 9 9 .7987047 .2892532 1 Observed cum. proportion
mpoi preq 9 9 .110982 .0018631 .2918259 Avg predicted Pr (y=#)

mpoi prle 9 9 .7987926 .192048 .9988381 Avg predicted cum. Pr (y=#)
mpoi ob pr 9 9 .0001291 -.1216984 .0972052 Observed - Avg Pr (y=#)

lab var mpoi preqg "Multivariate Poisson"

. graph twoway connected poi obeg poi preq mpoi preq poi val, ylabel(0 (.1) .3)
ytitle ("Probability of Count")
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number of children
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Multivariate Poisson offers a slight improvement over univariate Poisson — it explains some
heterogeneity. But it still doesn’t fit very well — underpredicts zeros, overpredicts ones, etc.

Just to clarify this, we can also obtain the probabilities presented in this graph using mtable:
. mtable, pr(0/8)

Expression: Pr(childs), predict(pr())
none one two three four five six seven eight or more
0.192 0.292 0.242 0.147 0.073 0.032 0.013 0.005 0.002
Specified values where .n indicates no values specified with at()
| No at()
__________ b
Current | .n



So we examined model fit graphically. We can also obtain a goodness-of-fit test (there are two
versions of it, one based on deviance residuals, one is based on Pearson residuals; they usually
produce similar results):

. estat gof
Deviance goodness-of-fit = 4279.437
Prob > chi2(2739) = 0.0000
Pearson goodness-of-fit = 3943.17
Prob > chi2(2739) = 0.0000

Since the probability is below .05, this suggests that predicted counts are significantly different
from the observed ones, and therefore Poisson model doesn’t fit well. We will deal with that later.

In addition to this, we have all the same tools for hypothesis tests and model comparisons — we can
use estat ic after poisson to get information criteria and use BIC comparisons to compare models,
especially non-nested ones; we can also use Irtest to compare nested models. And we can use test
command to get Wald tests for specific hypotheses (e.qg., if deciding whether to combine categories
of dummies).

Interpretation of Poisson models

A. Incidence rate ratios:
First, as mentioned above, we can calculate incidence rate ratios:

. poisson childs sex married sibs born educ, irr

Poisson regression Number of obs = 2745
LR chi2 (5) = 572.66

Prob > chi2 = 0.0000

Log likelihood = -4784.5079 Pseudo R2 = 0.0565
childs | IRR Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
sex | 1.215589 .0352512 6.73 0.000 1.148425 1.286682

married | 1.566147 .0452267 15.54 0.000 1.479966 1.657346

sibs | 1.039308 .0043848 9.14 0.000 1.03075 1.047938

born | .8017812 .0418881 -4.23 0.000 .7237455 .8882309

educ | .9401677 .0045282 -12.81 0.000 .9313344 .9490847

So the number of children for women is 1.22 times (or 22%) higher than the number for men, the
number of children for married is 1.57 times (or 57%) higher than for those not currently married,
each additional sibling increases the number of children by almost 4%, being foreign born
decreases the number of children by almost 10%, and each year of education reduces the number
of children by 6%.

We can also obtain incidence rate ratios using listcoef — this will also allow us to see standardized
ratios describing the change per one standard deviation of each variable.

. listcoef
poisson (N=2745): Factor Change in Expected Count
Observed SD: 1.6887584

0.19523 6.732 0.000 1.2156 1.1019 0.4970



married | 0.44862 15.535 0.000 1.5661 1.2506 0.4985
sibs | 0.03856 9.139 0.000 1.0393 1.1227 3.0008
born | -0.22092 -4.229 0.000 0.8018 0.9381 0.2893
educ | -0.06170 -12.810 0.000 0.9402 0.8324 2.9741
And we can get these as percents:
listcoef, percent
poisson (N=2745): Percentage Change in Expected Count
Observed SD: 1.6887584
childs | b z P>z % $StdX SDofX
_____________ +________________________________________________________
sex | 0.19523 6.732 0.000 21.6 10.2 0.4970
married | 0.44862 15.535 0.000 56.6 25.1 0.4985
sibs | 0.03856 9.139 0.000 3.9 12.3 3.0008
born | -0.22092 -4.229 0.000 -19.8 -6.2 0.2893
educ | -0.06170 -12.810 0.000 -6.0 -16.8 2.9741

Marriage and education seem to have the largest effects.

Listcoef with reverse option doesn’t work after Poisson because we are now dealing with
incidence rate ratios rather than odds ratios, so it doesn’t make sense to report them. To compare
the effect sizes between positive and negative effects, you can still calculate them, e.g., for

education:
.di exp(.06170*%2.9741)
1.2014173

So the effect of marriage is still stronger than that of education.

If we have multicategory variables, pwcompare may be useful, e.g.,

poisson childs i.sex i.marital sibs i.born educ

Iteration O: log likelihood = -4395.7525
Iteration 1: log likelihood = -4394.6057
Iteration 2: log likelihood = -4394.6042
Iteration 3: log likelihood = -4394.6042
Poisson regression Number of obs = 2745
LR chi2 (8) = 1352.47
Prob > chi2 = 0.0000
Log likelihood = -4394.6042 Pseudo R2 = 0.1334
childs | Coef std. Err z P>|z| [95% Conf. Interval]
_______________ +________________________________________________________________
sex |
female | .0959266 .0295251 3.25 0.001 .0380584 .1537948
|
marital |
widowed | .1476474 .0437708 3.37 0.001 .0618583 .2334365
divorced | -.1411699 .0391833 -3.60 0.000 -.2179677 -.064372
separated | -.004274 .069557 -0.06 0.951 -.1406031 .1320551
never married | -1.393685 .0547016 -25.48 0.000 -1.500898 -1.286472
|
sibs | .0317327 .0042583 7.45 0.000 .0233866 .0400788
|
born |
no | -.1795889 .0523534 -3.43 0.001 -.2821996 -.0769782
educ | -.0472726 .0048688 -9.71 0.000 -.0568153 -.0377299
_cons | 1.266891 .0752322 16.84 0.000 1.119439 1.414343

pwcompare marital, eform



Pairwise comparisons of marginal linear predictions

Margins : asbalanced
| Unadjusted
| exp (b) Std. Err. [95% Conf. Intervall]
____________________________ +________________________________________________
childs |
marital |
widowed vs married | 1.159104 .0507349 1.063812 1.262933
divorced vs married | .8683418 .0340245 .8041514 .9376561
separated vs married | .9957351 .0692603 .8688341 1.141171
never married vs married | .2481592 .0135747 .2229299 .2762437
divorced vs widowed | .7491491 .0386616 .6770801 .8288892
separated vs widowed | .8590558 .0656894 .7394905 .9979532
never married vs widowed | .2140957 .0138223 .1886485 .2429755
separated vs divorced | 1.146709 .086079 .9898211 1.328463
never married vs divorced | .2857852 .0176029 .2532854 .3224551
never married vs separated | .2492221 .0210122 .2112617 .2940034

B. Predicted rates and changes in rates
Next, we can examine predicted rates for various groups. For example, back to simpler model:

qui poisson childs i.sex i.married sibs i.born educ
. mtable, at(married=(0 1) sex=(1 2) born=1) atmeans
Expression: Predicted number of childs, predict /()

| sex married mu
__________ +_____________________________
1 | 1 0 1.276

2 | 1 1 1.998

3 2 0 1.551

4 | 2 1 2.429

Specified values of covariates
| sibs born educ
__________ +_____________________________
Current | 3.6 1 13.4

We can see that for an average native-born woman, the average number of children she has if she
is single is 1.55 and if she is married 2.43. An average native born man has 1.27 children on
average if he is single and approximately 2 children if he is married.

We can also use graphs when continuous variables are involved, e.g., to look at effects of

education for native born and foreign born men:
. mgen, at(sex=1 born=1 educ=(10(2)20)) stub(nbm )
Predictions from: margins, at(sex=1 born=1 educ=(10(2)20))

Variable Obs Unique Mean Min Max Label

nbm mu 6 6 1.496709 1.075388 1.993023 mean childs from margins

nbm 11 6 6 1.413758 .9871829 1.890828 95% lower limit

nbm ul 6 6 1.57966 1.163594 2.095217 95% upper limit

nbm educ 6 6 15 10 20 highest year of school completed

Specified values of covariates

sex born
1 1
. mgen, at(sex=1 born=2 educ=(10(2)20)) stub(fbm ) atmeans
Predictions from: margins, at(sex=1 born=2 educ=(10(2)20)) atmeans
Variable Obs Unique Mean Min Max Label



fbm mu 6 6 1.161688 .8346751 1.546907 mean childs from margins

fbm 11 6 6 1.033278 .7287982 1.381353 95% lower limit

fbom ul 6 6 1.290098 .9405519 1.712462 95% upper limit

fbm educ 6 6 15 10 20 highest year of school completed

Specified values of covariates
sex married sibs born

1 .459745 3.601821 2

lab var nbm mu "Native born men"
lab var fbm mu "Foreign born men"

graph twoway (rarea nbm ul nbm 11 nbm educ, color(gsl2) ) (rarea fbm ul fbm 11
fbm educ, color(gsl2) ) (connected nbm mu fbm mu nbm educ, legend(order (3 4))
ytitle ("Predicted Count"))
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In addition to rates themselves, we can also examine how such predicted rates change per change
of each independent variable — like in logit, we can examine discrete changes or marginal changes.

mchange, amount (all)

poisson: Changes in mu | Number of obs = 2745
Expression: Predicted number of childs, predict()
| Change p-value
_____________ +______________________
sex |
0 to 1 | 0.287 0.000
+1 | 0.391 0.000
+SD | 0.185 0.000
Range | 0.349 0.000
Marginal | 0.354 0.000
married |
0 to 1 | 0.819 0.000
+1 | 1.026 0.000
+SD | 0.454 0.000
Range | 0.819 0.000
Marginal | 0.813 0.000
sibs |
0 to 1 | 0.061 0.000
+1 | 0.071 0.000



+SD | 0.222 0.000

Range | 2.682 0.000

Marginal | 0.070 0.000
born |

0 to 1 | -0.457 0.000

+1 | -0.359 0.000

+SD | -0.112 0.000

Range | -0.366 0.000

Marginal | -0.400 0.000
educ |

0 to 1 | -0.242 0.000

+1 | -0.108 0.000

+SD | -0.304 0.000

Range | -2.871 0.000

Marginal | -0.112 0.000

Average prediction
1.812

To make this more interpretable, let’s indicate which variables are dummies:

poisson childs i.sex i.married sibs 1i.born educ

Iteration O: log likelihood = -4784.5123
Iteration 1: log likelihood = -4784.5079
Iteration 2: log likelihood = -4784.5079
Poisson regression Number of obs = 2745
LR chi2 (5) = 572.66
Prob > chi2 = 0.0000
Log likelihood = -4784.5079 Pseudo R2 = 0.0565
childs | Coef std. Err z P>|z]| [95% Conf. Interval]
_____________ +________________________________________________________________
sex |
female | .195229 .0289993 6.73 0.000 .1383915 .2520665
l.married | .4486183 .0288777 15.54 0.000 .392019 .5052176
sibs | .0385556 .004219 9.14 0.000 .0302865 .0468246
|
born |
no | -.2209195 .0522438 -4.23 0.000 -.3233154 -.1185235
educ | -.061697 .0048163 -12.81 0.000 -.0711369 -.0522572
_cons | .9290274 .0724785 12.82 0.000 .7869721 1.071083
mchange, amount (all)
poisson: Changes in mu | Number of obs = 2745
Expression: Predicted number of childs, predict()
| Change p-value
________________ +______________________
sex |
female vs male | 0.349 0.000
married |
1 vs 0 | 0.819 0.000
sibs |
0 to 1 | 0.061 0.000
+1 | 0.071 0.000
+SD | 0.222 0.000
Range | 2.682 0.000
Marginal | 0.070 0.000
born |
no vs yes | -0.366 0.000
educ |
0 to 1 | -0.242 0.000
+1 | -0.108 0.000
+SD | -0.304 0.000



Range | -2.871 0.000
Marginal | -0.112 0.000

Average prediction
1.812

So for an average person, each additional sibling increases the number of children by .07, and each
additional year of education decreases it by .11. Marriage increases the number of kids by .82, etc.

We can also look at changes in predicted rates graphically, e.g., to examine the difference (i.e.,
change when moving between categories) between native born and foreign born men depending on
the value of education variable:

. mgen, dydx(born) at (sex=1 educ=(10(2)20)) stub(diffbm ) atmeans
Predictions from: margins, dydx(born) at(sex=1 educ=(10(2)20)) atmeans

Variable Obs Unique Mean Min Max Label

diffbm d mu 6 6 -.2871959 -.3824311 -.2063509 d mean childs from margins
diffbm 11 6 6 -.4093363 -.5452841 -.2946197 95% lower limit

diffbm ul 6 6 -.1650556 =-.2195781 -.118082 95% upper limit

diffbm educ 6 6 15 10 20 highest year of school
completed

1. 2.
sex married sibs born
1 .459745 3.601821 .0921676

lab var diffbm d mu "Difference between native born and foreign born men"

. graph twoway (rarea diffbm ul diffbm 11 diffbm educ, color(gsl2) ) (connected
diffbm d mu diffbm educ, legend(order(2)) ytitle("Difference in Predicted Counts"))
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C. Predicted probabilities of counts and changes in probabilities
In addition to predicted rates themselves, we can also obtain predicted probabilities for each count
for specific combinations of independent variables, as well as changes in such probabilities. This is
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especially helpful if there are some count values that are of particular interest (e.g., 0, or 1, or 2);
we wouldn’t usually do this for each count value. Let’s look at predicted probabilities by gender
and marital status for counts 0-4 kids.

mtable, at (married=(0 1) sex=(1 2)) atmeans pr(0/4)
Expression: Pr(childs), predict (pr())

| sex married none one two three four
__________ +_____________________________________________________________________
1 1 0 0.286 0.358 0.224 0.093 0.029
2 | 1 1 0.141 0.276 0.271 0.177 0.086
3 | 2 0 0.219 0.332 0.253 0.128 0.049
4 | 2 1 0.093 0.220 0.262 0.208 0.124

Specified values of covariates
| sibs born educ
__________ +_____________________________
Current | 3.6 1.09 13.4

Graphs can once again be helpful for continuous variables (or a combination of continuous and a

categorical):
mgen, at(sex=1 born=1 educ=(10(2)20)) stub(nbmp ) atmeans pr(0/4)

Predictions from: margins, at(sex=1 born=1 educ=(10(2)20)) atmeans predict (pr(4))
Variable Obs Unique Mean Min Max Label

nbmp pr0 6 6 .24555601 .1452442 .3530922 ©pr(y=none) from margins
nbmp 110 6 6 .2258325 .1306376 .32287 95% lower limit

nbmp ul0 6 6 .2652798 .1598509 .3833145 95% upper limit

nbmp educ 6 6 15 10 20 highest year of school completed
nbmp Cpr0 6 6 .24555601 .1452442 .3530922 pr(y<=none)

nbmp prl 6 6 .3343 .2802253 .3675782 pr(y=one) from margins
nbmp 111 6 6 .3270483 .2666508 .3663383 95% lower limit

nbmp ull 6 6 .3415518 .2937998 .3688181 95% upper limit

nbmp Cprl 6 6 .5798562 .4254695 .7206704 pr(y<=one)

nbmp pr2 6 6 .2375513 .1913292 .2703247 pr(y=two) from margins
nbmp 112 6 6 .2299111 .1762435 .2693291 95% lower limit

nbmp ul2 6 6 .2451915 .2064149 .2713204 95% upper limit

nbmp Cpr2 6 6 .8174075 .6957943 .9119996 pr (y<=two)

nbmp pr3 6 6 .1174587 .0663929 .1738493 pr(y=three) from margins
nbmp 113 6 6 .1078026 .0556992 .1641472 95% lower limit

nbmp ul3 6 6 .1271147 .0770866 .1835515 95% upper limit

nbmp Cpr3 6 6 .9348661 .8696436 .9783925 pr(y<=three)

nbmp pr4 6 6 .0453594 .0172792 .0838535 pr(y=four) from margins
nbmp 114 6 6 .039475 .0130754 .074803 95% lower limit

nbmp ul4 6 6 .0512438 .021483 .0929041 95% upper limit

nbmp Cpré 6 6 .9802255 .9534971 .9956717 pr(y<=four)

Specified values of covariates
sex married sibs born

1 .459745 3.601821 1

mgen, at(sex=1 born=2 educ=(10(2)20)) stub(fbmp ) atmeans pr(0/4)
Predictions from: margins, at(sex=1 born=2 educ=(10(2)20)) atmeans predict (pr(4))

Variable Obs Unique Mean Min Max Label

fbomp pro 6 6 .3221438 .2129054 .4340155 pr(y=none) from margins

fbmp 110 6 6 .2822726 .177658 .3880633 95% lower limit

fomp ul0 6 6 .3620149 .2481528 .4799677 95% upper limit

fbmp educ 6 6 15 10 20 highest year of school completed
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pr (y<=none)
pr (y=one)
95%

from margins
lower limit

95% upper limit

pr (y<=one)
pr (y=two)
95%

from margins
lower limit

95% upper limit

pr (y<=two)
pr (y=three)
95%

from margins

lower limit

95% upper limit
pr (y<=three)
from margins

pr (y=four)
95%

lower limit

95% upper limit

pr (y<=four)

fbomp Cpr0 6 6 .3221438 .2129054 .4340155
fbomp prl 6 6 .3558725 .3293449 .367287
fomp 111 6 6 .3469756 .3100678 .3648889
fomp ull 6 6 .3647694 .348622 .369859
fbomp Cprl 6 6 .6780163 .5422503 .7962774
fomp pr2 6 6 .2052781 .1511855 .2547331
fomp 112 6 6 .1869009 .1288374 .2423807
fomp ul2 6 6 .2236552 .1735336 .2670854
fbomp Cpr2 6 6 .8832944 .7969834 .9474629
fbomp pr3 6 6 .0823727 .0420636 .1313495
fomp 113 6 6 .066514 .0305101 .1109228
fomp ul3 6 6 .0982313 .0536171 .1517762
fbomp Cpr3 6 6 .965667 .9283328 .9895265
fomp pr4 6 6 .0257938 .0087774 .0507964
fomp 114 6 6 .0182029 .0052531 .0374604
fomp ul4 6 6 .0333847 .0123016 .0641323
fbmp Cpr4 6 6 .9914608 .9791292 .9983039
Specified values of covariates
sex married sibs born
1 .459745 3.601821 2

lab var nbmp pr0O "Native born men"

lab var fbmp prO "Foreign born men"

graph twoway

(rarea

nbmp 110 nbmp ul0 nbmp educ ,

color(gsl2)

) (rarea

fbmp 110

fbmp uwl0 fbmp educ ,

color (gsl2)

)

(connected nbmp pr0

fbmp pr0 nbmp educ,

legend(order (3 4))

ytitle ("Probability of 0 kids"))
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Note that above, we also generated cumulative probabilities of each count or below; we can graph
those as well if that is more meaningful for our variable.

Similarly, we can examine changes in predicted probabilities of 0-4 counts:

mchange married, at (sex=1 born=1)

atmeans pr(0/4)

2745

poisson:
Expressio

Changes in Pr(y) | Number of obs =
n: Pr(childs), predict(pr())
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|
_____________ +_______________________________________________________
married |
+1 | -0.123 -0.116 0.002 0.078 0.078
p-value | 0.000 0.000 0.676 0.000 0.000
+SD | -0.068 -0.051 0.014 0.043 0.034
p-value | 0.000 0.000 0.000 0.000 0.000
Marginal | -0.147 -0.083 0.050 0.086 0.057
p-value | 0.000 0.000 0.000 0.000 0.000
Predictions at base value
| 0 1 2 3 4
_____________ +_______________________________________________________
Pr (ylbase) | 0.208 0.327 0.256 0.134 0.053
Base values of regressors
| sex married sibs born educ
_____________ +_______________________________________________________
at | 1 46 3.6 1 13.4

1: Estimates with margins option atmeans.

And we can examine changes in predicted probabilities of counts graphically:
mgen, dydx(born) at(sex=1 educ=(10(2)20)) stub(nfbdiffp ) atmeans pr(0/4)

Predictions from: margins, dydx(born) at(sex=1 educ=(10(2)20)) atmeans predict (pr(4))
Variable Obs Unique Mean Min Max Label

nfbdiffp d~0 6 6 .0765876 .0676611 .0809817 d pr(y=none) from margins
nfbdiffp 110 6 6 .0402904 .0342612 .0437966 95% lower limit

nfbdiffp ul0d 6 6 .1128848 .1010611 .1185632 95% upper limit

nfbdiffp e~c 6 6 15 10 20 highest year of school
completed

nfbdiffp C~0 6 6 .0765876 .0676611 .0809817 pr (y<=none)

nfbdiffp d~1 6 6 .0215725 -.0053163 .0491196 d pr(y=one) from margins
nfbdiffp 111 6 6 .010961 -.013708 .0295499 95% lower limit

nfbdiffp ull 6 6 .032184 .0030754 .0686893 95% upper limit

nfbdiffp C~1 6 6 .0981601 .075607 .1167808 pr (y<=one)

nfbdiffp d~2 6 6 -.0322732 -.0401783 -.0155917 d pr(y=two) from margins
nfbdiffp 112 6 6 -.048958 -.0588846 -.0276518 95% lower limit

nfbdiffp ul2 6 6 -.0155884 -.0220525 -.0035316 95% upper limit

nfbdiffp C~2 6 6 .0658869 .0354632 .1011891 pr (y<=two)

nfbdiffp d~3 6 6 -.035086 -.0424998 -.0243293 d pr(y=three) from margins
nfbdiffp 113 6 6 -.0501805 -.0620046 -.0343967 95% lower limit

nfbdiffp ul3 6 6 -.0199915 -.023345 -.0142619 95% upper limit

nfbdiffp C~3 6 6 .0308009 .0111339 .0586892 pr (y<=three)

nfbdiffp d~4 6 6 -.0195656 -.0330572 -.0085018 d pr(y=four) from margins
nfbdiffp 114 6 6 -.0273416 -.0464739 -.0120411 95% lower limit

nfbdiffp ul4 6 6 -.0117895 -.0196404 -.0049625 95% upper limit

nfbdiffp C~4 6 6 .0112353 .0026321 .025632 pr(y<=four)

1. 2.
sex married sibs born
1 .459745 3.601821 .0921676

graph twoway (connected nfbdiffp d pr0 nfbdiffp d prl nfbdiffp d pr2 nfbdiffp d pr3
nfbdiffp d pr4 nfbdiffp educ), ytitle("Diff. in prob. of 0-4 kids; native vs foreign
born™)
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Or focusing on one count, with confidence intervals:

. graph twoway (rarea

nfbdiffp 110 nfbdiffp ul0 nfbdiffp educ , color(gsl2) )

(connected nfbdiffp d prO0 nfbdiffp educ, legend(off) ytitle("Diff. in probability of 0
kids; native vs foreign born men"))
N
S i
]
="~ JE O S
o T -
[{e}
8 i
<
3 i
T T T T T T
10 12 14 16 18 20
highest year of school completed
Diagnostics:

In terms of diagnostics, we can test for multicollinearity the same way we did with logistic models.
To test for linearity and additivity, we can use Box-Tidwell test and mrunning and lowess using a
log of the original count variable (add 1 to the count before logging it; otherwise zeros will become

missing):
. gen countlg=log(childs+1)

We can also look at robust standard errors to compare them to the regular ones. We can also get
residuals and leverage statistics to assess the outliers; however, to do that, we need to estimate the
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same model using generalized linear models command — GLM. Unfortunately, predict after
Poisson is very limited, but after GLM version of Poisson we can get a range of statistics.

glm childs sex married sibs born educ, family(poisson)

Generalized linear models No. of obs = 2745

Optimization : ML Residual df = 2739

Scale parameter = 1

Deviance = 4279.437048 (1/df) Deviance = 1.562409

Pearson = 3943.169972 (1/df) Pearson = 1.439639
Variance function: V(u) = u [Poisson]

Link function : g(u) = 1ln(u) [Log]
AIC = 3.490352
Log likelihood = -4784.50787 BIC -17406.7
| OIM

childs | Coef. Std. Err. z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

sex | .195229 .0289993 6.73 0.000 .1383915 .2520665

married | .4486183 .0288777 15.54 0.000 .392019 .5052176

sibs | .0385556 .004219 9.14 0.000 .0302865 .0468246

born | -.2209195 .0522438 -4.23 0.000 -.3233154 -.1185235

educ | -.061697 .0048163 -12.81 0.000 -.0711369 -.0522572

_cons | .9547179 .1010692 9.45 0.000 .7566258 1.15281

Here’s what we can obtain by using predict after this (among other statistics):
cooksd calculates Cook's distance, which measures the aggregate change in
the estimated coefficients when each observation is left out of the
estimation.

deviance calculates the deviance residuals. Deviance residuals are
recommended by McCullagh and Nelder and by others as having the best
properties for examining the goodness of fit of a GLM. They are
approximately normally distributed if the model is correct. They may
be plotted against fitted values or against a covariate to inspect the
model's fit. Also see the pearson option below.

hat calculates the diagonals of the "hat" matrix as an analog to simple
linear regression.

pearson calculates the Pearson residuals. Be aware that Pearson residuals
often have markedly skewed distributions for non-normal family
distributions. Also see the deviance option above.

----+ Options +-————————————————— -

standardized requests that the residual be multiplied by the factor
(1-h)~[-1/2], where h is the diagonal of the hat matrix. This is done
to account for the correlation between depvar and its predicted value.

studentized requests that the residual be multiplied by one over the
square root of the estimated scale parameter.

We can use these the same way we have used them after logit, e.g.:
predict p
(option mu assumed; predicted mean childs)
(19 missing values generated)
predict rs, pearson standard
(20 missing values generated)
predict cooksd, cooksd
(20 missing values generated)
scatter p rs, xline(0) mlabel (id)
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Predicted mean childs

Would have a look at 1904, 921, 1643, 1646, 201.
Models Adjusted for Exposure

Models for count data also allow controlling for so-called exposure — that is usually a variable that
indicates how long there has been an opportunity to accumulate counts. E.g. an 20 y.o. and a 40
y.0. had different time available to have kids, and that will likely be reflected in their number of
children. So we can control for the duration of reproductive age — that’s the amount of exposure
one had. Let’s assume reproductive age to start at 15 and end at 45 (these numbers of course will
vary individually, and it would be best to get a variable with individual data on that, but this is our
best approximation):

. gen reprage=age-15
(14 missing values generated)
. replace reprage=30 if age>45 & age~=.

16



(1312 real changes made)

. poisson childs sex married sibs

Poisson regre

Log likelihoo

ssion

d = -4474.7807

born educ, exposure (reprage)

Number of obs

sex
married
sibs
born
educ
_cons
reprage

.3223659
.0249154
-.1354091
-.0575382
-2.218856

|
+
| .1829962
|
|
|
|
|
| (exposure)

.0291302
.0290622
.0042745
.0522745

.004645
.1006406

LR chi2 (5) =

Prob > chi2 =

Pseudo R2 =
P> z| [95% Conf.
0.000 .1259021
0.000 .265405
0.000 .0165375
0.010 -.2378651
0.000 -.0666423
0.000 -2.416108

.2400902
.3793267
.0332933
-.032953
-.0484341
-2.021604

What this actually does is: In(reprage) is entered in the model, but its coefficient is constrained to

1. If we don’t control for exposure, it’s assumed that all cases have had the same exposure.
You can get the same result by using a log of exposure variable and specifying it using offset

option: essentially, exposure option enters log of the variable specified into the model, while offset
enters the variable as it is (so typically you would use an already logged variable with this option);

both constrain the coefficient to 1, however.
. gen repragelog=log(reprage)

. poisson childs sex married sibs

Poisson regre

Log likelihoo

ssion

d = -4474.7807

born educ,

offset (reprageloq)
Number of obs =

_cons

.3223659
.0249154
-.1354091
-.0575382
-2.218856

|
+
| .1829962
|
|
|
|
|
| (offset)

.0291302
.0290622
.0042745
.0522745

.004645
.1006406

LR chi2 (5) =

Prob > chi2 =

Pseudo R2 =
P> z| [95% Conf.
0.000 .1259021
0.000 .265405
0.000 .0165375
0.010 -.2378651
0.000 -.0666423
0.000 -2.416108

.2400902
.3793267
.0332933
-.032953
-.0484341
-2.021604

We can manually replicate what these options are doing by setting a constraint on our model --

first, we specify that constraint #1 will mean repragelog coefficient should be 1, and then estimate

the model adding repragelog and using constraint 1:
. constraint 1 repragelog=l
. poisson childs sex married sibs

Poisson regre

Log likelihoo
(1)

ssion

d = -4474.7807
[childs]repragelog

born educ repragelog,
Number of obs
Wald chi2 (5)

constraints (1)

Prob > chi?2

2734
371.72
0.0000

sex
married
sibs

born

educ
repragelog
_cons

.3223659
.0249154
-.13540091
-.0575382
1

|
+
| .1829962
|
|
[
|
[
| -2.218856

.0291302
.0290622
.0042745
.0522745

.004645

.1006406

.1259021
.265405
.0165375
-.2378651
-.0666423

-2.416108

.2400902
.3793267
.0332933
-.032953
-.0484341

-2.021604
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After any of these models (regardless of the option), we can graphically examine model fit:
. mgen, pr(0/8) meanpred stub (expmpoi )
Predictions from:

Variable Obs Unique Mean Min Max Label

expmpoi val 9 9 4 0 8 number of children
expmpoi obeq 9 9 .1111111 .0080468 .2882224 Observed proportion
expmpoi oble 9 9 .7985451 .2882224 1 Observed cum. proportion
expmpoi preq 9 9 .1109258 .0027285 .270141 Avg predicted Pr (y=#)
expmpoi prle 9 9 .7986562 .2284905 .998332 Avg predicted cum. Pr (y=#)
expmpoi ob~r 9 9 .0001853 -.099329 .0597319 Observed - Avg Pr (y=#)

lab var expmpoi preq "Multivariate Poisson with Exposure"
. graph twoway connected poi obeq poi preq mpoi preqg expmpoi preq poi val, ylabel(0 (.1)
.3) ytitle("Probability of Count")

T T T T T

0 2 4 6 8
number of children

—=e&—— Observed proportion ——#-—- Univariate Poisson

el Multivariate Poisson — &—- Multivariate Poisson with Exposure

This model fits somewhat better but still has the same problems. Further, when we think that our
measure of exposure is not a perfect measure of how much time one had to accumulate counts, we
may just enter log of exposure variable it into the model without constraining the coefficient to 1:

. poisson childs sex married sibs born educ repragelog

Poisson regression Number of obs = 2734
LR chi2 (6) = 1151.72

Prob > chi2 = 0.0000

Log likelihood = -4473.9245 Pseudo R2 = 0.1140
childs | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
sex | .1835258 .0291282 6.30 0.000 .1264356 .240616

married | .3266819 .0292507 11.17 0.000 .2693516 .3840121

sibs | .0254587 .0042934 5.93 0.000 .0170438 .0338737

born | -.1396764 .0523749 -2.67 0.008 -.2423293 -.0370235

educ | -.0577855 .0046561 -12.41 0.000 -.0669113 -.0486597
repragelog | .9417878 .0441539 21.33 0.000 .8552478 1.028328
cons | -2.028168 .1760539 -11.52 0.000 -2.373228 -1.683109

Here it has a coefficient not significantly different from 1 (the confidence interval includes 1), so
reprage seems to be a good estimate of exposure time. If it would be significantly different from 1,
and we would have substantive reasons to believe that our measure of exposure is imperfect, we
might use this model instead of the one with exposure option or offset option.

18



In terms of diagnostics and model fit for models with exposure, everything works the same except

Box-Tidwell test which does not work with exposure or offset option, but does work with

constraints — but now we need two of them:
constraint 1 repragelog=1
constraint 2 Irepr 1 =1
boxtid poisson childs educ sex married sibs born repragelog, constraints(l 2)

Poisson regression Number of obs = 2734
Wald chi2 (8) = 852.30
Log likelihood = -4472.2691 Prob > chiz2 = 0.0000
(1) [childs]Irepr 1 =1
childs | Coef. Std. Err. 4 P>|z| [95% Conf. Intervall]
_____________ +________________________________________________________________
Ieduc 1 | -.5378193 .1694153 -3.17 0.002 -.8698671 -.2057714
Ieduc_pl | -.0004982 .1461062 -0.00 0.997 -.2868611 .2858646
Isibs 1 | .3208799 .1250397 2.57 0.010 .0758066 .5659532
Isibs pl | .0009448 .12313 0.01 0.994 -.2403854 .2422751
Irepr 1 | 1 . . . . .
Irepr pl | 1.577093 .0834845 18.89 0.000 1.413467 1.74072
Isex 1 | .182057 .0292248 6.23 0.000 .1247774 .2393366
married | .3238347 .0292863 11.06 0.000 .2664346 .3812348
Iborn 1 | -.1413858 .0530498 -2.67 0.008 -.2453614 -.0374101
_cons | .2499269 .0315315 7.93 0.000 .1881263 .3117275
educ |  -.0582693 .0046599 -12.504 Nonlin. dev. 0.069 (P = 0.793)
pl | 1.067851 .2711467 3.938
sibs | .0255532 .0042942 5.951 Nonlin. dev. 0.742 (P = 0.389)
pl | .7165476 .3622967 1.978
repragelog] 1 0 . Nonlin. dev. 4.167 (P = 0.041)
pl | .2074807 .43052406 0.482

Deviance: 8944.406.

For those statistics that are obtained using predict after GLM, we need to use offset option with

GLM (exposure option doesn’t work for that):

glm childs sex married sibs born educ, family(poisson) offset (reprageloq)

Generalized linear models No. of obs = 2734

Optimization : ML Residual df = 2728

Scale parameter = 1

Deviance = 3675.111598 (1/df) Deviance = 1.347182

Pearson = 3353.513369 (1/df) Pearson = 1.229294
Variance function: V(u) = u [Poisson]

Link function : g(u) = 1ln(u) [Log]
AIC = 3.277821
Log likelihood = -4474.780694 BIC = -17912.97
| OIM

childs | Coef Std. Err 4 P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

sex | .1829962 .0291302 6.28 0.000 .1259021 .2400902

married | .3223659 .0290622 11.09 0.000 .265405 .3793267

sibs | .0249154 .0042745 5.83 0.000 .0165375 .0332933

born | -.13540091 .0522745 -2.59 0.010 -.2378651 -.032953

educ | -.0575382 .004645 -12.39 0.000 -.0666423 -.0484341

_cons | -2.218856 .1006406 -22.05 0.000 -2.416108 -2.021604

repragelog | (offset)

After that, we can obtain residuals etc.
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