Sociology 7704: Regression Models for Categorical Data
Instructor: Natasha Sarkisian

Preliminary Data Screening

A. Examining Univariate Normality

Normality of each of the variables used in your model is not required, but it can often help us
prevent further problems (especially heteroscedasticity and multivariate normality violations).
Normality of the dependent variable is especially influential. We can examine the distribution
graphically:

. histogram agekdbrn, normal
(bin=34, start=18, width=2.0882353)
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This is a quantile-normal (Q-Q) plot. It plots the quantiles of a variable against the quantiles of a
normal distribution. In a perfectly normal distribution, all observations would be on the line, so the
closest they are to being on the line, the closer the distribution to being normal. Any large
deviations from the straight line indicate problems with normality. Note: this plot has nothing to
do with linearity!

. pnorm agekdbrn
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This is a standardized normal probability (P-P) plot, it is more sensitive to non-normality in the
middle range of data, while gnorm is sensitive to non-normality near the tails.

We can also formally evaluate the distribution of a variable -- i.e., test the hypothesis of normality
(with separate tests for skewness and kurtosis) using sktest:

. sktest age
Skewness/Kurtosis tests for Normality
——————— joint ------
Variable | Pr (Skewness) Pr (Kurtosis) adj chi2 (2) Prob>chi?2
_____________ +_______________________________________________________
age | 0.000 0.000 0.0000

Here, the dot instead of chi-square value indicates that it’s a very large number. This test is very
sensitive to sample size, however — with large sample sizes, even small deviations from normality
can be identified as statistically significant. But in this case, the graphs also confirmed this
conclusion. Next, we’ll consider transformations to bring this variable closer to normal. To search

for transformations, we can use ladder command:
. ladder agekdbrn

Transformation formula chi2 (2) P(chi2)
cubic agekdbrn”3 0.000
square agekdbrn”?2 0.000
identity agekdbrn 0.000
square-root sgrt (agekdbrn) . 0.000
log log (agekdbrn) 32.49 0.000
reciprocal root 1/sqgrt (agekdbrn) 8.57 0.014
reciprocal 1/agekdbrn 14.84 0.001
reciprocal square 1/ (agekdbrn”2) 0.000
reciprocal cubic 1/ (agekdbrn”3) 0.000

Ladder allows you to search for normalizing transformation — the larger the P value, the closer to
normal. Typically, square roots, log, and inverse (1/x) transformations normalize right (positive)



skew. Inverse (reciprocal) transforms are “stronger” than logarithmic, which are “stronger” than
square roots. For negative skews, we can use square or cubic transformation.

In this output, again, dots instead of chi2 indicate very large numbers. If there is a dot instead of P
as well, it means that this specific transformation is not possible because of zeros or negative
values. If zeros or negative values preclude a transformation that you think might help, the typical
practice is to first add a constant that would get rid of such values (e.g., if you only have zeros but
no negative values, you can add 1), and then perform a transformation. In this case, it appears that
1/square root brings the distribution closer to normal.

Note that just as sktest, in large samples the ladder command tests are rather sensitive to non-
normalities — often it can be useful to take a random subsample and run ladder command on them
to identify the best transformation. (But make sure the sample is not too small; keep it around 150-
200 observations.)

. ladder age

Transformation formula chi2 (2) P (chi2)
cubic age”3 0.000
square age”™2 0.000
identity age 0.000
square-root sgrt (age) 0.000
log log (age)

0.000

reciprocal root 1/sqrt (age) 0.000
reciprocal 1/age 0.000
reciprocal square 1/ (age”2) 0.000
reciprocal cubic 1/ (age”3) 0.000

It’s not normal and none of the transformations seem to help. If your sample size is large,
everything will be significantly different from normal, so you should either rely on graphical
examination (gladder) or randomly select a subsample of your dataset and do this type of analysis
for that subsample. We can use sample command to take a 5% random sample from the data. We
first “preserve” the dataset so that we can bring the rest of observations back after we are done
with ladder, and then sample:

. preserve

. sample 5
(2627 observations deleted)

. ladder age

Transformation formula chi2 (2) P (chi2)
cubic age”3 40.17 0.000
square age”2 25.53 0.000
identity age 10.53 0.005
square-root sgrt (age) 6.81 0.033
log log (age) 5.99 0.050
reciprocal root 1/sqgrt (age) 4.78 0.091
reciprocal 1/age 8.23 0.01le6
reciprocal square 1/ (age”?2) 32.80 0.000
reciprocal cubic 1/ (age”3) 63.69 0.000



Note that now it’s much more clear which transformations bring this variable the closest to
normal.

. restore

Restore command restores our original dataset (as it was when we ran preserve).
Let’s examine transformations for agekdbrn graphically as well:

gladder agekdbrn
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Same using quantile-normal plots:
gladder agekdbrn
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Let's attempt to use this transformation in our regression model:
gen agekdbrnrr=1/(sqrt (agekdbrn))

(810 missing values generated)
reg agekdbrnrr educ born sex mapres80 age

Source | SS daf MS Number of obs = 1089
————————————— e F( 5, 1083) = 54.00
Model | .107910937 5 .021582187 Prob > F = 0.0000
Residual | .432834805 1083 .000399663 R-squared = 0.1996
————————————— e Adj R-squared = 0.1959
Total | .540745743 1088 .000497009 Root MSE = .01999
agekdbrnrr | Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
educ | -.0026108 .0002316 -11.27 0.000 -.0030652 -.0021564

born | -.0075379 .0023762 -3.17 0.002 -.0122004 -.0028755

sex | .0098921 .0012561 7.88 0.000 .0074274 .0123568

mapres80 | -.0001494 .000049 -3.05 0.002 -.0002455 -.0000533

age | -.0002532 .0000409 -6.19 0.000 -.0003336 -.0001729

cons | .2535923 .0051683 49.07 0.000 .2434514 .2637332

Overall, transformations should be used sparsely - always consider ease of model interpretation as
well. Here, our transformation made interpretation more complicated. It is also important to check
that we did not introduce any nonlinearities by this transformation — we’ll deal with that issue
soon.

If a variable contains zero or negative values, you need to add a constant to it before looking for
transformations (such that all values of the variable become larger than zero). For example:

sum sibs



P (chi2)
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Variable | Obs Mean Std. Dev.
_____________ +________________________________________________________
sibs | 2756 3.599419 2.997262
ladder sibs
Transformation formula chi? (2)
cubic sibs”*3
square sibs”2
identity sibs .
square root sgrt (sibs) 64.41
log log (sibs)
1/ (square root) 1/sqrt (sibs)
inverse 1/sibs
1/square 1/ (sibs”2)
1/cubic 1/ (sibs”3)
gladder sibs
o cubic - square
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Histograms by transformation
gen sibsl=sibs+1
(9 missing values generated)
ladder sibsl
Transformation formula chi2 (2)
cubic sibsl”3
square sibsl”2
identity sibsl
square root sgrt (sibsl) .
log log (sibsl) 0.48
1/ (square root) 1/sqrt (sibsl)
inverse 1/sibsl
1/square 1/ (sibs172)
1/cubic 1/ (sibsl1”3)

gladder sibsl
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If as variable is negatively skewed, you might have an easier time finding a transformation for it
after reversing it. For this example, we will generate a scale of happiness that’s the reverse of
unhappiness scale and examine both distributions:

tabl happy7 satjob7 satfam?
-> tabulation of happy7

happy or unhappy on the

|
whole | Freqg Percent Cum
__________________________ +___________________________________
completely happy | 141 12.16 12.16
very happy | 510 43.97 56.12
fairly happy | 391 33.71 89.83
neither happy nor unhappy | 69 5.95 95.78
fairly unhappy | 32 2.76 98.53
very unhappy | 16 1.38 99.91
completely unhappy | 1 0.09 100.00
__________________________ +___________________________________
Total | 1,160 100.00
-> tabulation of satjob7
job satisfaction in general | Freqg Percent Cum
___________________________________ +___________________________________
completely satisfied | 127 15.49 15.49
very satisfied | 289 35.24 50.73
fairly satisfied | 2604 32.20 82.93
neither satisfied nor dissatisfied | 53 6.46 89.39
fairly dissatisfied | 47 5.73 95.12
very dissatisfied | 29 3.54 98.66
completely dissatisfied | 11 1.34 100.00
___________________________________ +___________________________________
Total | 820 100.00
-> tabulation of satfam7
family satisfaction in general | Freq. Percent Cum.



completely satisfied
very satisfied
fairly satisfied

+
|
|
|
|
fairly dissatisfied | 31
|
|
+
|

neither satisfied nor dissatisfied 70 6.10 94.77
2.70 97.47
very dissatisfied 20 1.74 99.22
completely dissatisfied 9 0.78 100.00
Total 1,148 100.00
alpha happy7 satjob7 satfam?
Test scale = mean (unstandardized items)
Average interitem covariance: .525359
Number of items in the scale: 3
Scale reliability coefficient: 0.6732
egen unhappiness=rowmean (happy’7 satjob7 satfam7)
(1600 missing values generated)
sum unhappiness
Variable | Obs Mean Std. Dev. Min Max
_____________ +________________________________________________________
unhappiness | 1165 2.469814 .9298462 1 7

To reverse the scale, we add its maximum and its minimum and subtract the original scale from
that:

gen happiness=r (max) +r (min) -unhappiness
(1600 missing values generated)

sum happiness
Variable | Obs Mean Std. Dev. Min Max
happiness | 1165 5.530186 .9298462 1 7

ladder happiness

Transformation formula chi2 (2) P(chi2)
cubic happin~s”3 11.17 0.004
square happin~s”2 15.55 0.000
identity happin~s . 0.000
square root sgrt (happin~s) . 0.000
log log (happin~s) 0.000
1/ (square root) 1/sqrt (happin~s) 0.000
inverse 1/happin~s

1/square 1/ (happin~s~2)

1/cubic 1/ (happin~s”3)

gladder happiness
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ladder unhappiness
Transformation formula chi2 (2) P(chi2)
cubic unhapp~s”"3 0.000
square unhapp~s”2 0.000
identity unhapp~s . 0.000
square root sgrt (unhapp~s) 27.32 0.000
log log (unhapp~s) 13.42 0.001
1/ (square root) 1/sqgrt (unhapp~s) 0.000
inverse 1/unhapp~s 0.000
1/square 1/ (unhapp~s”"2) 0.000
1/cubic 1/ (unhapp~s”"3) 0.000

gladder unhappiness
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We might want to use log, but if we want the interpretation to be about happiness, we will reverse

it again after transforming:
. gen unhappylog=log (unhappiness)
(1600 missing values generated)
sum unhappylog
Variable
unhappylog 1165 .8345584 .3790659

. gen unhappylogr=r (max)+r (min) -unhappylog
(1600 missing values generated)

sum unhappylogr
Variable | Obs Mean Std. Dev.

unhappylogr | 1165 1.111352 .3790659

B. Examining bivariate linearity

Min Max
0 1.94591
Min Max
0 1.94591

Before you run a regression, it’s a good idea to examine your variables one at a time as indicated
before, but we should also examine the relationship of each independent variable to the dependent

to assess its linearity. A good tool for such an examination is lowess — i.e., a scatterplot with a

locally weighted regression line going through it (here, it is based on means, but we can also do it

using medians):

lowess agekdbrn age
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Lowess smoother
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We can change bandwidth to make the curve less smooth (decrease the number) or smoother

(increase the number):
. lowess agekdbrn age, bwidth(.1)

Lowess smoother

40
Il

20

10

T
20 40 60 80 100
age of respondent

bandwidth = .1

We can also add a regression line to see the difference better:

. scatter agekdbrn age, mcolor(yellow) || lowess agekdbrn age, lcolor(red) || 1lfit
agekdbrn age, lcolor (blue)
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Based on lowess plots, we conclude that the relationship between age and agekdbrn is not linear
and we need to address that.

Remedies for nonlinearity problems:

When we find a nonlinear relationship, we usually try to find a transformation to linearize it,
although sometimes we may choose to break up the corresponding independent variable into a
series of dummies instead.

1. Monotone nonlinear relationship. Power transformations can be used to linearize relationships if
strong monotone nonlinearities are found. The following chart gives suggestions for
transformations when the curve looks a certain way:

Yy up
¥8, y2
A
\/ /
x down > X UP
log x, —1/x \\ / x&x9
o N
y down
log y, —1/y

. lowess income98 educ
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Lowess smoother
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Either a square of X (educ) or a log of Y (income) should fix this.

=educ”2
(12 missing values generated)

gen educ?

lowess income98 educ?
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gen income98lg
(121 missing values generated)

log (income98)

lowess income981lg educ?2
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2. Nonmonotone relationship. For non-monotone relationships (e.g. parabola or cubic), use
polynomial functions of the variable, e.g. age and age squared, etc. The pictures above for age and
agekdbrn relationship would suggest that we might want to add a cubic term for age as well as a
squared term. It is important, however, to attempt to maintain simplicity and interpretability of the
results when doing transformations. So let’s try squared term. We want to enter both age and age
squared into our regression model. But using age and age squared in the model at the same time
will create multicollinearity because the two variables have a strong relationship—to avoid that,
we have to mean-center age prior to generating a square and a cube. That is, whenever we plan to
use more than a single term for the same variable in our regression model, always mean-center
(i.e., if you just plan to use age squared without age, like we did for educ in the example above,
then you don’t need to mean center, but if we wanted to use both educ and educ2, we’d have to
mean-center educ and only then generate educ?).

For example, without mean-centering:
. gen age2=age”?2
(14 missing values generated)

. reg agekdbrn educ born sex mapres80 age age2

Source | SS df MS Number of obs = 1089
————————————— o F( 6, 1082) = 44 .22
Model | 6138.53315 6 1023.08886 Prob > F = 0.0000
Residual | 25034.1298 1082 23.1369037 R-squared = 0.1969
————————————— e Adj R-squared = 0.1925
Total | 31172.663 1088 28.6513447 Root MSE = 4.8101
agekdbrn | Coef. std. Err. t P>|t]| [95% Conf. Interval]
_____________ +________________________________________________________________
educ | .5678949 .0569661 9.97 0.000 .4561184 .6796713

born | 1.567736 .5723843 2.74 0.006 .4446266 2.690844

sex | -2.140989 .3028244 -7.07 0.000 -2.735179 -1.546799

mapres80 | .0332034 .0117896 2.82 0.005 .0100704 .0563364

age | .2808181 .055909 5.02 0.000 .1711158 .3905203

age2 | -.0022448 .0005551 -4.04 0.000 -.003334 -.0011556

_cons | 8.92424 1.643755 5.43 0.000 5.698932 12.14955
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. reg agekdbr
Source |

_____________ +

Model |

Residual |

+

|

|
+
educ |
born |

sex |
mapres80 |
age |

age2 |
_cons |

n educ born sex mapres80 age age2, beta

SS df MS Number of obs = 1089
—————————————————————————————— F( 6, 1082) = 44 .22
6138.53315 6 1023.08886 Prob > F = 0.0000
25034.1298 1082 23.1369037 R-squared = 0.1969
—————————————————————————————— Adj R-squared = 0.1925
31172.663 1088 28.6513447 Root MSE = 4.8101
Coef Std. Err t P>t Beta
.5678949 .0569661 9.97 0.000 .2884756
1.567736 .5723843 2.74 0.006 .0751117
-2.140989 .3028244 -7.07 0.000 -.1937892
.0332034 .0117896 2.82 0.005 .080348
.2808181 .055909 5.02 0.000 .790523
-.0022448 .0005551 -4.04 0.000 -.637722
8.92424 1.643755 5.43 0.000

Note that age and age2 have high betas with opposite signs -- that's one indication of
multicollinearity. Often when high degree of multicollinearity is present, we would also observe

high standard errors. In fact, when reading published research using OLS, pay attention to
standard errors -- if they are high relative the to size of the coefficient itself, it's a reason for a

concern about possible multicollinearity. Let's check our suspicion using VIFs (Variance Inflation

Factors):
. vif
Variable

mapres80
born
sex

|
+
|
|
educ |
|
|
|
+
|

Mean VIF

Indeed, high degree of multicollinearity. But luckily, we can avoid it. When including variables
that are generated using other variables already in the model (as in this case, or when we want to
enter a product of two variables to model an interaction term), we should first mean-center the

VIF 1/VIF
33.51 0.029845
33.37 0.029963

1.13 0.886374
1.10 0.911906
1.01 0.986930
1.01 0.987914
11.86

variable (only if it is continuous; don't mean-center dichotomous variables!). That's how we'd do

it in this case:

sum age
Variable

age |
. gen agemean=
(14 missing va
. gen agemean?
(14 missing va

2751 46.28281 17.37049 18 89
age-r (mean)
lues generated)
=agemean”?2
lues generated)

. reg agekdbrn educ born sex mapres80 agemean agemean2, beta

Source |

+
Model |
Residual |
+

|

agekdbrn |

SS df MS Number of obs = 1089
—————————————————————————————— F( 6, 1082) = 44 .22
6138.53316 6 1023.08886 Prob > F = 0.0000
25034.1298 1082 23.1369037 R-squared = 0.1969
—————————————————————————————— Adj R-squared = 0.1925
31172.663 1088 28.6513447 Root MSE = 4.8101
Coef std. Err. t P>|t| Beta

15



+
educ | .5678949 .0569661 9.97 0.000 .2884756
born | 1.567736 .5723843 2.74 0.006 .0751117
sex | -2.140989 .3028244 -7.07 0.000 -.1937892
mapres80 | .0332034 .0117896 2.82 0.005 .080348
agemean | .0730284 .0105054 6.95 0.000 .2055801
agemean2 | -.0022448 .0005551 -4.04 0.000 -.1209343
_cons | 17.11274 1.126117 15.20 0.000
vif
Variable | VIF 1/VIF
_____________ +______________________
agemean?2 | 1.20 0.829918
agemean | 1.18 0.848643
educ | 1.13 0.886374
mapres80 | 1.10 0.911906
born | 1.01 0.986930
sex | 1.01 0.987914
_____________ +______________________
Mean VIF | 1.11

We can see that the multicollinearity problem has been solved. We also note that the squared term
is significant. To better understand what this means substantively, we’ll generate a graph:

adjust educ born sex mapres80 if e (sample), gen(predl)
Dependent variable: agekdbrn
Created variable: predl
Variables left as is: age, age2
Covariates set to mean: educ = 13.316804, born = 1.0707071, sex = 1.6244261, mapres80
= 39.440773

Command: regress

All | xb
__________ +___________
| 23.6648

Key: xb = Linear Prediction

line predl age, sort
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This doesn’t quite replicate what we saw on lowess plot, so the relationship of age and agekdbrn is
likely still misspecified. Let’s try cube:

gen agemean3=agemean”3
(14 missing values generated)
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reg

Source

Model
Residual

agekdbrn

SS

7554.3167
23618.346

31172.66

df MS

4 7 1079.18811
3 1081 21.8486089

educ born sex mapres80 agemean agemean? agemean3
Number of obs =

F( 7, 1081)
Prob > F
R-squared

Adj R-squared
Root MSE

educ
born

sex
mapres80
agemean
agemean?
agemean3
_cons

[95% Conf.

Interval]

.581195
1.292907
-2.117214
.0349051
-.0424837
-.0059131
.0002359
17.58535

.4725265
.1994591
-2.694654
.0124215
-.0770384
-.0072987
.0001784
15.43504

.6898634
2.386355
-1.539774
.0573887
-.007929
-.0045275
.0002934
19.73566

adjust educ born sex mapres80 if e (sample),

= 39.440771
All | xb
__________ +___________
| 23.6648
Key: xb = Linear Prediction
line pred2 age, sort
2
o
o |
N
ﬁ -
T T T T T
20 40 60 80 100

Dependent variable:
Created variable:
Variables left as is:

Covariates set to mean:

3 1088 28.6513447

std. Err t P>t
.055382 10.49 0.000
.5572673 2.32 0.021
.2942876 -7.19 0.000
.0114586 3.05 0.002
.0176105 -2.41 0.016
.0007061 -8.37 0.000
.0000293 8.05 0.000
1.09589 16.05 0.000
gen (pred?)
agekdbrn Command: regress
pred2

agemean, agemean?2, agemean3

educ = 13.316804, born = 1.0707071, sex = 1.

age of respondent

6244261,

mapres80
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C. Screening for Univariate and Bivariate Outliers

We usually start identifying potential outliers when conducting univariate and bivariate
examination of the data. For example, when examining the distribution of educ, we would be
concerned about those with very few years of education:

. histogram educ

n

0 5 10 15 20
highest year of school completed
When examining the distribution of mother’s prestige, we’d be concerned about those with very
high values:

. histogram mapres80

oo}
3 -

.04
L

.02
L

40 60
mothers occupational prestige score (1980)

Such observations are likely high leverage points and we might want to deal with them early on,
oftentimes by topcoding or bottomcoding:

. tab educ
highest |
year of |
school |
completed | Freqg Percent Cum
____________ +___________________________________
0 | 5 0.18 0.18
1| 2 0.07 0.25
2 15 0.54 0.80
3 | 2 0.07 0.87



4 | 6 0.22 1.09
5 8 0.29 1.38
6 | 25 0.91 2.29
7 14 0.51 2.80
8 | 66 2.40 5.19
9 | 60 2.18 7.37
10 | 88 3.20 10.57
11 | 137 4.98 15.55
12 | 818 29.71 45.26
13 | 265 9.63 54.89
14 | 374 13.59 68.47
15 | 157 5.70 74.17
16 | 377 13.69 87.87
17 | 93 3.38 91.25
18 | 128 4.65 95.90
19 | 43 1.56 97.46
20 | 70 2.54 100.00
____________ +___________________________________
Total | 2,753 100.00
gen educb=educ
(12 missing values generated)
drop educb
gen educb7=educ
(12 missing values generated)
replace educb7=7 if educ<?7
(63 real changes made)
tab educb7
educb7 | Freq Percent Cum
____________ +___________________________________
7 77 2.80 2.80
8 | 66 2.40 5.19
9 | 60 2.18 7.37
10 | 88 3.20 10.57
11 | 137 4.98 15.55
12 | 818 29.71 45.26
13 | 265 9.63 54.89
14 | 374 13.59 68.47
15 | 157 5.70 74.17
16 | 377 13.69 87.87
17 | 93 3.38 91.25
18 | 128 4.65 95.90
19 | 43 1.56 97.46
20 | 70 2.54 100.00
____________ +___________________________________
Total | 2,753 100.00
sum mapres80
Variable | Obs Mean Std. Dev.
_____________ +________________________________________________________
mapres80 | 1619 40.96912 13.63189

tab mapres80

mothers |
occupationa |
1 prestige |
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|
(1980) | Freqg Percent
____________ +___________________________________
17 | 14 0.86
19 | 5 0.31
20 | 22 1.36
21 | 9 0.56
22 | 39 2.41
23 | 83 5.13
24 | 14 0.86
25 | 13 0.80
26 | 3 0.19
27 | 3 0.19
28 | 125 7.72
29 | 38 2.35
30 | 28 1.73
31 | 53 3.27
32 | 87 5.37
33 | 57 3.52
34 | 48 2.96
35 | 63 3.89
36 | 77 4.76
37 | 1 0.06
38 | 4 0.25
39 | 16 0.99
40 | 30 1.85
41 | 5 0.31
42 | 77 4.76
43 | 21 1.30
44 | 39 2.41
45 | 13 0.80
46 | 160 9.88
47 | 68 4.20
48 | 9 0.56
49 | 30 1.85
50 | 2 0.12
51 | 60 3.71
52 | 19 1.17
53 | 6 0.37
54 | 10 0.62
55 | 11 0.68
56 | 4 0.25
57 | 7 0.43
59 | 8 0.49
60 | 16 0.99
6l | 7 0.43
63 | 2 0.12
64 | 74 4.57
65 | 14 0.86
66 | 100 6.18
67 | 1 0.06
68 | 1 0.06
69 | 6 0.37
73 | 3 0.19
74 | 9 0.56
75 | 2 0.12
86 | 3 0.19
____________ +___________________________________
Total | 1,619 100.00

gen mapres80t66=mapres80
(1146 missing values generated)
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. replace mapres80t66=66 if mapres80>66 & mapres80<.
(25 real changes made)

Bivariate examination can further help us identify potential leverage points and outliers. For
example, we can label observations in the lowess plot to pinpoint problematic ones:

. scatter agekdbrn mapres80, mlabel (id) || lowess agekdbrn mapres80, lcolor(red) ||
1fit agekdbrn mapres80, lcolor (blue)

8 A ©2460
01305
o 1888, °25%
< [ ]
(o
™
2268
o |
N
o | 02339
-

T T
20 40 60 80 100
mothers occupational prestige score (1980)

° r's age when 1st child born
Fitted values

lowess agekdbrn mapres80

What we see standing out here is 2460 which has a high value on agekdbrn as well as two
observations that have very high values of mother’s prestige score; these are 2366 and 1747:

. list id mapres80 if mapres80>80 & mapres80~=. & agekdbrn~=.

1896. | 2366 86 |
2447, | 1747 86 |

In this case, we would notice all of these on univariate plots as well, but sometimes, we do detect

problematic observations on such plots that go beyond what we see in univariate ones.
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