Sociology 704: Topics in Multivariate Statistics Instructor: Natasha Sarkisian

OLS Regression in Stata

To run an OLS	regression:							
. reg agekdbrr	n educ born se	x mapr	es80					
Source	SS	df		MS		Number of obs	=	1091
	+					F(4, 1086)	= 5	51.24
Model	4954.03533	4	1238.	50883		Prob > F	= 0.	0000
Residual	26251.1232	1086	24.1	72305		R-squared	= 0.	1588
+	+					Adj R-squared	= 0.	1557
Total	31205.1586	1090	28.62	85858		Root MSE	= 4.	9165
								·
agekdbrn	Coef.	Std.	Err.	t	P> t	[95% Conf.	Inter	val]
	+							·
educ	.6122718	.0569	422	10.75	0.000	.5005426	.72	24001
born	1.360161	.5816	506	2.34	0.020	.218875	2.50)1447
sex	-2.37973	.3075	642	-7.74	0.000	-2.983218	-1.77	6243
mapres80	.0243138	.0119	552	2.03	0.042	.0008558	.047	7718
_cons	16.95808	1.101	139	15.40	0.000	14.79748	19.1	1868
								·
Note that regr	ression coeffi	cients	are p	artial s	slope co	efficients; the	ey ind	licate
the change in	the expected	value	of the	depende	ent vari	able associate	d with	ı one
unit increase	in the indepe	ndent '	variab	le. when	n all ot	her independen	t vari	ables

Note that regression coefficients are partial slope coefficients; they indicate the change in the expected value of the dependent variable associated with one unit increase in the independent variable, when all other independent variables are held constant. These coefficients can potentially have two types of interpretation: cross-sectional and over time. Strictly speaking, all analyses we will do in this course are based on cross-sectional data.

To interpret the results, let's see how born and sex are coded: . codebook born sex

born was r born in this country _____ type: numeric (byte) label: born range: [1,2] units: 1 unique values: 2 missing .: 6/2765 tabulation: Freq. Numeric Label 1 yes 2503 256 2 no б . _____ sex respondents sex _____ type: numeric (byte) label: sex range: [1,2] units: 1 unique values: 2 missing .: 0/2765 tabulation: Freq. Numeric Label 1 male 1228 1537 2 female

. reg agekdbi	rn educ born s	ex map	res80	, beta		-
Source	SS	df		MS		Number of obs = 1091
	+					F(4, 1086) = 51.24
Model	4954.03533	4	1238	.50883		Prob > F = 0.0000
Residual	26251.1232	1086	24.	172305		R-squared = 0.1588
	+					Adj R-squared = 0.1557
Total	31205.1586	1090	28.6	285858		Root MSE = 4.9165
agekdbrn	Coef.	Std.	Err.	t	P> t	Beta
	+					
educ	.6122718	.0569	422	10.75	0.000	.3108984
born	1.360161	.5816	506	2.34	0.020	.0651372
sex	-2.37973	.3075	642	-7.74	0.000	2154051
mapres80	.0243138	.0119	552	2.03	0.042	.0588174
_cons	16.95808	1.101	139	15.40	0.000	

To get standardized regression coefficients, we can use beta option:

These coefficients indicate the number of standard deviations that agekdbrn increases per each one standard deviation increase in an independent variable.

In order to get your regression output to look nice, you can use estimates table. For example, for our regression model, we can run:

. est table, star b(%8.3f) label stats(N) varwidth(40) _____ Variable | active highest year of school completed | 0.612*** 1.360* was r born in this country respondents sex -2.380*** mothers occupational prestige sc 0.024* Constant | 16.958*** N | 1091.000 _____ legend: * p<0.05; ** p<0.01; *** p<0.001

This way you don't need to retype anything - it's closer to the journal format table. To find out more details and options, see help est_table.

Note on missing data - Stata estimation commands (e.g. regress, logit etc) automatically drop from the analysis all cases that miss data points on at least one of the variables used in the analyses (this is called listwise deletion). This can be very problematic when there is a lot of missing data and when the patterns of missing data are systematic (which is often the case).

If you are using nominal variables with more than just 2 categories or ordinal independent variables, you should not enter these variables in the model the same way you would use a continuous variable. For a nominal variable, that will result in nonsensical coefficients, because the categories are not really placed in any order so one unit increase is meaningless. For an ordinal variable, it's a stretch to use it in that fashion, because we assume equal distances among all categories. Before assuming that, we should test that assumption by introducing categories as separate variables. Here's how that's done in Stata.

marital						ma	+ 1
narital 							tal status
type: numerio							
	label: n	narital					
	range: [units: 1	
uniqu	e values: 5)			miss:	ing .: 0/2765	
ta	abulation: H	rea	Numeri	c Labe	1		
		1269		1 marr			
		247		2 wido			
		445		3 divo	rced		
		96		4 sepa	rated		
		708		5 neve	r married	1	
.xi:reg age			_			Imarital_1	am i + i + ad
Source	_IMALICA			MS	Ty Coded	Number of obs	
						F(8, 1082)	
Model	5991.99195	5 8	748.9	98994		Prob > F	
Residual	25213.1666					R-squared	= 0.1920
						Adj R-squared	
Total	31205.1586	5 1090	28.62	85858		Root MSE	
agekdbrn	Coef.	Std.	 Err.	 t	 P> t		Interval
educ	.5662673	.057	0585	9.92	0.000		.6782251
born	1.317066	.574	0325		0.022	.1907232	2.443409
sex	-2.187909	.30			0.000	-2.789156	
mapres80	.0232956	.011	//29	1.98	0.048	.0001953 7637768	.0463958
_Imarital_2 Imarital 3	.331999	.558	454Z 4001		0.552		
_Imarital_3 _Imarital_4	8996868	.391			0.022 0.003	-1.667851 -3.478789	
	-2.76481	.469				-3.686719	
_imaricar_5 cons	17.93003	1.11		16.13		15.74943	20.11063
		·					
Alternatively							
. tab marital,	gen(marital	_)					
marital							
status	Freq.	. Pe	ercent		Cum.		
married	1,269)	45.90	4	 5.90		
widowed			8.93	5			
divorced			16.09		0.92		
separated			3.47		4.39		
never married	708	3	25.61		0.00		
Total	2,765						
	r.						
. des marital'							
. des marital'	storage dis	splay	valu	e			

marital marital1 marital2 marital3 marital4 marital5	byte %8 byte %8 byte %8 byte %8	3.0g 3.0g 3.0g	marit	al	marital=	=married	
. reg agekdb Source	rn educ borr SS	n sex maj df		arita] IS	l2 marita	l3 marital4 ma: Number of obs F(8, 1082)	= 1091
Model Residual	5991.9919 25213.160					Prob > F	= 0.0000 = 0.1920
Total	31205.158	36 1090	28.628	5858		Root MSE	= 4.8273
agekdbrn	Coef.	Std.	Err.	t	₽> t	[95% Conf.	Interval]
educ born sex	.5662673 1.317066 -2.187909	.574		9.92 2.29 -7.14	0.000 0.022 0.000	.4543094 .1907232 -2.789156	.6782251 2.443409 -1.586662
mapres80 marital2 marital3	0232956 .331999 .8996868	.558	4542	1.98 0.59 -2.30	0.048 0.552 0.022	.0001953 7637768 -1.667851	.0463958 1.427775 1315229
marital4 marital5 _cons	-2.101723 -2.76481 17.93003	.469	8441	-2.99 -5.88 16.13		-3.478789 -3.686719 15.74943	7246572 -1.842901 20.11063
increase prod						hether each one iable:	e unit
degree	degree 						hest degree
	degree type: label:	numeric degree	(byte)				hest degree
degree	type:		(byte)				hest degree
degree 	type: label: range:	degree [0,4] 5	Numeric 1 2 3	lt h high juni bach	miss	rs hig units: 1 ing .: 5/2765	hest degree
degree 	type: label: range: ue values: abulation: ekdbrn educ _Idegre	degree [0,4] 5 Freq. 400 1485 202 443 230 5 born set	Numeric 1 2 3 4 • x mapres (r	lt h high juni bach grad	miss el nigh scho n school ior colle nelor duate degree	rs hig units: 1 ing .: 5/2765 ol ge ; _Idegree_0 or Number of obs	mitted) = 1091
degree uniq ta . xi: reg aga i.degree Source	type: label: range: ue values: abulation: ekdbrn educ _Idegre	degree [0,4] 5 Freq. 400 1485 202 443 230 5 born set ee_0-4 df 	Numeric 1 2 3 4 • • • • • • • • • • • • • •	lt h high back grad 80 i.c atural IS 8923	miss el nigh scho n school ior colle nelor duate degree	rs hig units: 1 ing .: 5/2765 ol ge ; _Idegree_0 on	mitted) = 1091 = 32.94 = 0.0000 = 0.1959

agekdbrn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ born sex mapres80 _Idegree_1 _Idegree_2 _Idegree_3 _Idegree_4	.0506574 1.267439 -2.192157 .0225168 1.934153 2.201938 4.446438 7.624749	.1089486 .570358 .3025278 .0118318 .6048514 .8713455 .9701565 1.215111	0.46 2.22 -7.25 1.90 3.20 2.53 4.58 6.27	0.642 0.026 0.000 0.057 0.001 0.012 0.000 0.000	163117 .1483064 -2.785764 0006991 .7473387 .4922196 2.542837 5.240509	.2644317 2.386572 -1.598549 .0457326 3.120968 3.911656 6.350039 10.00899
_cons	21.78773	1.329524	16.39	0.000	19.17899	24.39647

The increases are 1.93, 0.27, 2.24, 3.18, i.e. unequal, so it is not appropriate to use this variable as if it were continuous - have to use a set of dummies like we just did.

OLS Regression Assumptions

Al. All independent variables are quantitative or dichotomous, and the dependent variable is quantitative, continuous, and unbounded. All variables are measured without error.

A2. All independent variables have some variation in value (non-zero variance). A3. There is no exact linear relationship between two or more independent variables (no perfect multicollinearity).

A4. At each set of values of the independent variables, the mean of the error term is zero.

A5. Each independent variable is uncorrelated with the error term.

A6. At each set of values of the independent variables, the variance of the error term is the same (homoscedasticity).

A7. For any two observations, their error terms are not correlated (lack of autocorrelation).

A8. At each set of values of the independent variables, error term is normally distributed.

A9. The change in the expected value of the dependent variable associated with a unit increase in an independent variable is the same regardless of the specific values of other independent variables (additivity assumption). A10. The change in the expected value of the dependent variable associated with a unit increase in an independent variable is the same regardless of the specific values of this independent variable (linearity assumption).

Al-A7: Gauss-Markov assumptions: If these assumptions hold, the resulting regression estimates are BLUE (Best Linear Unbiased Estimates).

Unbiased: if we were to calculate that estimate over many samples, the mean of these estimates would be equal to the mean of the population (i.e, on average we are on target).

Best (also known as efficient): the standard deviation of the estimate is the smallest possible (i.e., not only are we on target on average, but we don't deviate too far from it).

If A8-A10 also hold, the results can be used appropriately for statistical inference (i.e., significance tests, confidence intervals).

OLS Regression diagnostics and remedies

1. Multicollinearity

Our real life concern about the multicollinearity is that independent variables are highly (but not perfectly) correlated. Need to distinguish from perfect multicollinearity -- two or more independent variables are linearly related in practice, this usually happens only if we make a mistake in including the variables; Stata will resolve this by omitting one of those variables and will tell you it did it. It can also happen when the number of variables exceeds the number of observations.

Perfect multicollinearity violates regression assumptions -- no unique solution for regression coefficients.

High, but not perfect, multicollinearity is what we most commonly deal with. High multicollinearity does not explicitly violate the regression assumptions it is not a problem if we use regression only for prediction (and therefore are only interested in predicted values of Y our model generates). But it is a problem when we want to use regression for explanation (which is typically the case in social sciences) - in this case, we are interested in values and significance levels of regression coefficients. High degree of multicollinearity results in imprecise estimates of the unique effects of independent variables.

First, we can inspect the correlations among the variables: . corr educ born sex mapres80 (obs=1615)

	educ	born	sex	mapres80
educ	1.0000			
born	0.0182	1.0000		
sex	0.0066	0.0205	1.0000	
mapres80	0.2861	0.0169	-0.0423	1.0000

Next, we can evaluate the matrix of correlations among the regression coefficients, it allows us to see whether there are any high correlations, but does not provide a direct indication of multicollinearity:

. reg agekdbrn	i educ born se	x mapres80				
Source	SS	df	MS		Number of obs	= 1091
+					F(4, 1086)	= 51.24
Model	4954.03533	4 1238	.50883		Prob > F	= 0.0000
Residual	26251.1232	1086 24.	172305		R-squared	= 0.1588
+					Adj R-squared	= 0.1557
Total	31205.1586	1090 28.6	285858		Root MSE	= 4.9165
1						
agekdbrn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
educ	.6122718	.0569422	10.75	0.000	.5005426	.724001
born	1.360161	.5816506	2.34	0.020	.218875	2.501447
sex	-2.37973	.3075642	-7.74	0.000	-2.983218	-1.776243
mapres80	.0243138	.0119552	2.03	0.042	.0008558	.0477718
_cons	16.95808	1.101139	15.40	0.000	14.79748	19.11868
— — —						

. corr	educ	born sex ma	pres80, _	coef		
		educ	born	sex	mapres80	_cons
		+				
	educ	1.0000				
	born	-0.0125	1.0000			
	sex	-0.0184	-0.0134	1.0000		
map	res80	-0.2696	-0.0312	0.0014	1.0000	
	_cons	-0.5578	-0.5375	-0.4342	-0.2256	1.0000

*Variance Inflation Factors are a better tool to diagnose multicollinearity problems. These indicate how much the variance of coefficient estimate increases because of correlations of a certain variable with the other variables in the model. E.g. VIF of 4 means that the variance is 4 times higher than it could be, and the standard error is twice as high as it could be.

. vif Variable	VIF	1/VIF
mapres80 educ born sex	1.08 1.08 1.00 1.00	0.926124 0.926562 0.998366 0.999456
Mean VIF	1.04	

*Different researchers advocate for different cutoff points for VIF. Some say that if any one of VIF values is larger than 4, there are some multicollinearity problems associated with that variable. Others use cutoffs of 5 or even 10. In the example above, there are no problems with multicollinearity regardless of the cutoff we pick.

*Solutions to consider when your model has a high degree of multicollinearity:

1. See if you could create a meaningful scale from the variables that are highly correlated, and use that scale instead of the individual variables (i.e. several variables are reconceptualized as indicators of one underlying construct). Some useful commands in Stata here include factor, which provides a factor analysis of the selected variables:

. corr mapres (obs=1246)	80 papres8	D		
(000 1210)	mapres80	papres80		
mapres80 papres80	1.0000 0.3245	1.0000		
. factor mapr (obs=1246)		s80 factors; 1 factor	retained)	
		Difference	,	Cumulative
1 2	0.42981 -0.21920	0.64901	2.0408 -1.0408	2.0408 1.0000
Variable	Factor Lo	oadings Uniqueness		

mapres80 | 0.46358 0.78510 0.46358 0.78510 papres80 . predict prestige (regression scoring assumed) Scoring coefficients (method = regression) _____ Variable | Factor1 -----mapres80 | 0.35000 papres80 | 0.35000 _____ . sum prestige Variable | Obs Mean Std. Dev. Min Max _____ prestige | 1246 -2.63e-10 .569652 -1.168373 1.99678

*We can now use prestige variable in subsequent OLS regressions. We might want to report Chronbach's alpha - it indicates the reliability of the scale. It varies between 0 and 1, with 1 being perfect. Typically, alphas above .7 are considered acceptable, although some argue that those above .5 are ok.

. alpha mapres80 papres80 Test scale = mean(unstandardized items)

Average interitem covariance:	56.39064
Number of items in the scale:	2
Scale reliability coefficient:	0.5036

2. Consider if all variables are necessary. Try to primarily use theoretical considerations -- automated procedures such as backward or forward stepwise regression methods (available via "sw regress" command) are potentially misleading; they capitalize on minor differences among regressors and do not result in an optimal set of regressors. If not too many variables, examine all possible subsets.

3. If using highly correlated variables is absolutely necessary for correct model specification, you can use biased estimates. The idea here is that we add a small amount of bias but increase the efficiency of the estimates for those highly correlated variables. The most common method of this type is ridge regression (see http://members.iquest.net/~softrx/ for the Stata module).

2. Normality

A. Examining Univariate Normality

Normality of each of the variables used in your model is not required, but it can often help us prevent further problems (especially heteroscedasticity and multivariate normality violations). Normality of the dependent variable is especially influential. We can examine the distribution graphically:

. histogram agekdbrn, normal
(bin=34, start=18, width=2.0882353)

. kdensity age, normal

. qnorm agekdbrn

This is a quantile-normal (Q-Q) plot. It plots the quantiles of a variable against the quantiles of a normal distribution. In a perfectly normal distribution, all observations would be on the line, so the closest they are to being on the line, the closer the distribution to being normal. Any large deviations from the straight line indicate problems with normality. Note: this plot has nothing to do with linearity!

This is a standardized normal probability (P-P) plot, it is more sensitive to non-normality in the middle range of data, while qnorm is sensitive to non-normality near the tails.

We can also formally evaluate the distribution of a variable -- i.e., test the hypothesis of normality (with separate tests for skewness and kurtosis) using sktest:

. sktest age

Skewness/Kurtosis tests for Normality

Variable	Pr(Skewness)	Pr(Kurtosis)		joint Prob>chi2
age	0.000	0.000	•	0.0000

Here, the dot instead of chi-square value indicates that it's a very large number. This test is very sensitive to sample size, however - with large sample sizes, even small deviations from normality can be identified as statistically significant. But in this case, the graphs also confirmed this conclusion. Next, we'll consider transformations to bring this variable closer to normal.

To search for transformations, we can use ladder command: . ladder agekdbrn

Transformation	formula	chi2(2)	P(chi2)
cubic	agekdbrn^3		0.000
square	agekdbrn^2		0.000
raw	agekdbrn		0.000
square-root	sqrt(agekdbrn)	•	0.000
log	log(agekdbrn)	32.49	0.000
reciprocal root	1/sqrt(agekdbrn)	8.57	0.014
reciprocal	1/agekdbrn	14.84	0.001
reciprocal square	1/(agekdbrn^2)		0.000
reciprocal cubic	1/(agekdbrn^3)	•	0.000

Ladder allows you to search for normalizing transformation - the larger the P value, the closer to normal. Typically, square roots, log, and inverse (1/x) transformations normalize right (positive) skew. Inverse (reciprocal) transforms are "stronger" than logarithmic, which are "stronger" than square roots. For negative skews, we can use square or cubic transformation.

In this output, again, dots instead of chi2 indicate very large numbers. If there is a dot instead of P as well, it means that this specific transformation is not possible because of zeros or negative values. If zeros or negative values preclude a transformation that you think might help, the typical practice is to first add a constant that would get rid of such values (e.g., if you only have zeros but no negative values, you can add 1), and then perform a transformation. In this case, it appears that 1/square root brings the distribution closer to normal.

Note that just as sktest, in large samples the ladder command tests are rather sensitive to non-normalities - often it can be useful to take a random subsample and run ladder command on them to identify the best transformation. . ladder age

Transformation	formula	chi2(2)	P(chi2)
cubic square	age^3 age^2	•	0.000
raw	age	•	0.000
square-root log	sqrt(age) log(age)	•	0.000
reciprocal root reciprocal	1/sqrt(age) 1/age	•	0.000 0.000
reciprocal square reciprocal cubic	1/(age^2) 1/(age^3)	•	0.000 0.000

It's not normal and none of the transformations seem to help. We can use sample command to take a 5% random sample from the data. We first "preserve" the dataset so that we can bring the rest of observations back after we are done with ladder, and then sample:

. preserve . sample 5 (2627 observations del . ladder age	eted)		
Transformation	formula	chi2(2)	P(chi2)
cubic	age ³	40.17	0.000
square	age^2	25.53	0.000
raw	age	10.53	0.005
square-root	sqrt(age)	6.81	0.033
log	log(age)	5.99	0.050
reciprocal root	1/sqrt(age)	4.78	0.091
reciprocal	1/age	8.23	0.016
reciprocal square	1/(age^2)	32.80	0.000
reciprocal cubic	1/(age^3)	63.69	0.000

. restore

Note that now it's much more clear which transformations bring this variable the closest to normal.

Restore command restores our original dataset (as it was when we ran preserve). Let's examine transformations for agekdbrn graphically as well:

. gladder agekdbrn

Histograms by transformation

Same using quantile-normal plots:

. qladder agekdbrn

. gen agekdbrnrr=1/(sqrt(agekdbrn)) (810 missing values generated)

(810 missing v	<i>v</i> alues generat	ed)				
. reg agekdbrr	nrr educ born	sex ma	apres80 age			
Source	SS	df	MS		Number of obs =	1089
+				-	F(5, 1083) =	54.00
Model	.107910937	5	.02158218	7	Prob > F =	0.0000
Residual	.432834805	1083	.00039966	3	R-squared =	0.1996
+				-	Adj R-squared =	0.1959
Total	.540745743	1088	.00049700	9	Root MSE =	.01999
agekdbrnrr	Coef.	Std.	Err.	E P> t	[95% Conf. I	nterval]

	+					
educ	0026108	.0002316	-11.27	0.000	0030652	0021564
born	0075379	.0023762	-3.17	0.002	0122004	0028755
sex	.0098921	.0012561	7.88	0.000	.0074274	.0123568
mapres80	0001494	.000049	-3.05	0.002	0002455	0000533
age	0002532	.0000409	-6.19	0.000	0003336	0001729
_cons	.2535923	.0051683	49.07	0.000	.2434514	.2637332

Overall, transformations should be used sparsely - always consider ease of model interpretation as well. Here, our transformation made interpretation more complicated. It is also important to check that we did not introduce any nonlinearities by this transformation - we'll deal with that issue soon.

B. Examining Multivariate Normality

OLS is not very sensitive to non-normally distributed errors but the efficiency of estimators decreases as the distribution substantially deviates from normal (especially if there are heavy tails). Further, heavily skewed distributions are problematic as they question the validity of the mean as a measure for central tendency and OLS relies on means. Therefore, we usually test for nonnormality of residuals' distribution and if it's found, attempt to use transformations to remedy the problem.

To test normality of error terms distribution, first, we generate a variable containing residuals:

. predict residual, resid

(1676 missing values generated)

Next, we can use any of the tools we used above to evaluate the normality of distribution for this variable. For example, we can construct the qnorm plot: . qnorm resid

In this case, residuals deviate from normal quite substantially. We could check whether transforming the dependent variable using the transformation we identified above would help us:

. reg agekdbri	nrr educ born	sex ma	pres80	age			
Source	SS	df	I	MS		Number of obs =	1089
	+					F(5, 1083) =	54.00
Model	.107910937	5	.0215	82187			0.0000
Residual	.432834805	1083	.0003	99663		R-squared =	0.1996
	+					Adj R-squared =	0.1959
Total	.540745743	1088	.0004	97009		Root MSE =	.01999
agekdbrnrr	Coef.	Std.	Err.	t	P> t	[95% Conf. Inte	erval]
	+						

educ born	0026108 0075379	.0002316 .0023762	-11.27 -3.17	0.000 0.002	0030652 0122004	0021564 0028755
sex	.0098921	.0012561	7.88	0.000	.0074274	.0123568
mapres80	0001494	.000049	-3.05	0.002	0002455	0000533
age	0002532	.0000409	-6.19	0.000	0003336	0001729
_cons	.2535923	.0051683	49.07	0.000	.2434514	.2637332

. predict resid2, resid

(1676 missing values generated)

. qnorm resid2

Looks much better - the residuals are essentially normally distributed although it looks like there are a few outliers in the tails. We could further examine the outliers and influential observations; we'll discuss that later.

3. Linearity.

A. Examining linearity in bivariate context

Before you run a regression, it's a good idea to examine your variables one at a time as indicated before, but we should also examine the relationship of each independent variable to the dependent to assess its linearity. A good tool for such an examination is lowess - i.e. a scatterplot with locally weighted regression line (here based in means, but can also do median) going through it (lowess is the command, options are used to specify line color):

. lowess agekdbrn age, lcolor(red)

We can change bandwidth to make the curve less smooth (decrease the number) or smoother (increase the number):

. lowess agekdbrn age, lcolor(red) bwidth(.1)

We can also add a regression line to see the difference better: . scatter agekdbrn age, mcolor(yellow) || lowess agekdbrn age, lcolor(red) || lfit agekdbrn age, lcolor(blue)

Based on lowess plots, we conclude that the relationship between age and agekdbrn is not linear and we need to address that. But before we do, let's consider further diagnostic tools.

B. Examining linearity in multivariate models.

Bivariate plots do not tell the whole story - we are interested in partial relationships, controlling for all other regressors. We can try plots for such relationship using mrunning command. Let's download that first: . search mrunning

Keyword search
 Keywords: mrunning
 Search: (1) Official help files, FAQs, Examples, SJs, and STBs
Search of official help files, FAQs, Examples, SJs, and STBs

SJ-5-3 gr0017 A multivariable scatterplot smoother (help mrunning, running if installed) P. Royston and N. J. Cox Q3/05 SJ 5(3):405--412 presents an extension to running for use in a multivariable context

Click on gr0017 to install the program. Now we can use it:

. mrunning agekdbrn educ born sex mapres80 age 1089 observations, R-sq = 0.2768

We can clearly see some substantial nonlinearity for educ and age; mapres80 doesn't look quite linear either. We can also run our regression model and examine the residuals. One way to do so would be to plot residuals against each continuous independent variable: .lowess resid age, mcolor(yellow)

We can detect some nonlinearity in this graph. A more effective tool for detecting nonlinearity in such multivariate context is so-called augmented component plus residual plots, usually with lowess curve:

. acprplot age, lowess mcolor(yellow)

In addition to these graphical tools, there are also a few tests we can run. One way to diagnose nonlinearities is so-called omitted variables test. It searches for a pattern in residuals that could suggest that a power transformation of one of the variables in the model is omitted. To find such factors, it uses either the powers of the fitted values (which means, in essence, powers of the linear combination of all regressors) or the powers of individual regressors in predicting Y. If it finds a significant relationship, this suggests that we probably overlooked some nonlinear relationship.

. ovtest Ramsey RESET test using powers of the fitted values of agekdbrn Ho: model has no omitted variables F(3, 1080) =2.74 Prob > F =0.0423 . ovtest, rhs (note: born dropped due to collinearity) sex dropped due to collinearity) (note: born³ dropped due to collinearity) (note: born⁴ dropped due to collinearity) (note: sex^3 dropped due to collinearity) (note: sex^4 dropped due to collinearity) (note: Ramsey RESET test using powers of the independent variables model has no omitted variables Ho: F(11, 1074) =14.84 0.0000 Prob > F =

*Looks like we might be missing some nonlinear relationships.

We will, however, also explicitly check for linearity for each independent variable. We can do so using Box-Tidwell test. First, we need to download it:

. net search boxtid (contacting http://www.stata.com) 2 packages found (Stata Journal and STB listed first) _____ sq112 1 from http://www.stata.com/stb/stb50 STB-50 sg112_1. Nonlin. reg. models with power or exp. func. of covar. / STB insert by / Patrick Royston, Imperial College School of Medicine, UK; / Gareth Ambler, Imperial College School of Medicine, UK. / Support: proyston@rpms.ac.uk and gambler@rpms.ac.uk / After installation, see sg112 from http://www.stata.com/stb/stb49 STB-49 sgl12. Nonlin. reg. models with power or exp. functs of covars. / STB insert by Patrick Royston, Imperial College School of Medicine, UK; / Gareth Ambler, Imperial College School of Medicine, UK. / Support: proyston@rpms.ac.uk and gambler@rpms.ac.uk / After installation, see We select the first one and install it. Now use it: . boxtid reg agekdbrn educ born sex mapres80 age Iteration 0: Deviance = 6483.522Iteration 1: Deviance = 6470.107 (change = -13.41466) Iteration 2: Deviance = 6469.55 (change = -.5577601) Iteration 3: Deviance = 6468.783 (change = -.7663782) Iteration 4: Deviance = 6468.6 (change = -.1832873) Iteration 5: Deviance = 6468.496 (change = -.103788) Iteration 6: Deviance = 6468.456 (change = -.0399491) Iteration 7: Deviance = 6468.438 (change = -.0177698) Iteration 8: Deviance = 6468.43 (change = -.0082658) Iteration 9: Deviance = 6468.427 (change = -.0035944) Iteration 10: Deviance = 6468.425 (change = -.0018104) Iteration 11: Deviance = 6468.424 (change = -.0008303) -> gen double Ieduc_1 = X^2.6408-2.579607814 if e(sample) -> gen double Ieduc__2 = X^2.6408*ln(X)-.9256893949 if e(sample) (where: X = (educ+1)/10) -> gen double Imapr__1 = X^0.4799-1.931881531 if e(sample) -> gen double Imapr $2 = X^{0.4799 \ln(X) - 2.650956804}$ if e(sample) (where: X = mapres 80/10) -> gen double Iage__1 = X^-3.2902-.0065387933 if e(sample) -> gen double Iage__2 = X^-3.2902*ln(X)-.009996425 if e(sample) (where: X = age/10) -> gen double Iborn_1 = born-1 if e(sample) -> gen double Isex_1 = sex-1 if e(sample) [Total iterations: 33] Box-Tidwell regression model Source | SS df MS Number of obs = 1089 _____ F(8, 1080) = 38.76Model | 6953.00253 8 869.125317 Prob > F = 0.0000 R-squared = 0.2230 Residual 24219.6605 1080 22.4256115 Adj R-squared = 0.2173 _____ Total | 31172.663 1088 28.6513447 Root MSE = 4.7356 _____ agekdbrn | Coef. Std. Err. t P>|t| [95% Conf. Interval] _____+ Ieduc_11.215639.70832731.720.086-.1742152.605492Ieduc_p1.00374.86069870.000.997-1.6850911.692571Imapr_11.1538459.016280.130.898-16.5375718.84525

Imapr_p1 Iage1 Iage_p1 Iborn1 Isex1 _cons	.0927861 -67.26803 4932163 1.380925 -2.017794 25.14711	42.28364 53.49507 .5659349 .298963	0.04 -1.59 -0.01 2.44 -6.75 85.08	0.972 0.112 0.993 0.015 0.000 0.000	-5.009163 -150.2354 -105.4593 .2704681 -2.604408 24.56717	5.194736 15.69937 104.4728 2.491381 -1.43118 25.72706
educ p1	.5613397 2.64077 .	.05549 7027411	10.116 3.758	Nonlin.	dev. 11.972	(P = 0.001)
T T T		0115436 1.28955	2.926 0.372	Nonlin.	dev. 0.126	(P = 0.724)
		0098828 8046904	5.405 -4.089	Nonlin.	dev. 39.646	(P = 0.000)

Deviance: 6468.424.

Here, we interpret the last three portions of output, and more specifically the P values there. P=0.001 for educ and P=0.000 for age suggests that there is some nonlinearity with regard to these two variables. Mapres80 appears to be fine.

C. Remedies for nonlinearity problems.

Power transformations can be used to linearize relationships if strong nonlinearities are found. The following chart gives suggestions for transformations when the curve looks a certain way.

For nonmonotone relationship (e.g. parabola), use polynomial functions of the variable, e.g. age and age squared, etc. The pictures above for age would suggest that we might want to add a cubic term as well. It is important, however, to attempt to maintain simplicity and interpretability of the results when doing transformations. So let's try squared term. We want to enter both age and age squared into our regression model. We already generated age squared earlier, but using age and age squared in the model at the same time will create multicollinearity because the two variables have a strong relationship:

. reg agekdbrn educ born sex mapres80 age age2

Source	SS	df 	MS		Number of obs $F(6, 1082)$	= 1089 = 44.22
Model Residual	6138.53315 25034.1298		3.08886 .369037		Prob > F R-squared Adj R-squared	= 0.0000 = 0.1969
Total	31172.663	1088 28.6	513447		Root MSE	= 4.8101
agekdbrn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ born sex mapres80 age age2 _cons	.5678949 1.567736 -2.140989 .0332034 .2808181 0022448 8.92424	.0569661 .5723843 .3028244 .0117896 .055909 .0005551 1.643755	9.97 2.74 -7.07 2.82 5.02 -4.04 5.43	0.000 0.006 0.000 0.005 0.000 0.000 0.000	.4561184 .4446266 -2.735179 .0100704 .1711158 003334 5.698932	.6796713 2.690844 -1.546799 .0563364 .3905203 0011556 12.14955

. reg agekdbrn educ born sex mapres80 age age2, beta

Source	SS	df	MS		Number of obs = 1089 F(6, 1082) = 44.22
Model Residual	6138.53315 25034.1298		.08886 .369037		Prob > F = 0.0000 R-squared = 0.1969 Adj R-squared = 0.1925
Total	31172.663	1088 28.6	513447		Root MSE = 4.8101
agekdbrn	Coef.	Std. Err.	t	P> t	Beta
educ born sex mapres80 age age2 _cons	.5678949 1.567736 -2.140989 .0332034 .2808181 0022448 8.92424	.0569661 .5723843 .3028244 .0117896 .055909 .0005551 1.643755	9.972.74-7.072.825.02-4.045.43	0.000 0.006 0.000 0.005 0.000 0.000 0.000	.2884756 .0751117 1937892 .080348 .790523 637722

Note that age and age2 have high betas with opposite signs -- that's one indication of multicollinearity. Often when high degree of multicollinearity is present, we would also observe high standard errors. In fact, when reading published research using OLS, pay attention to standard errors -- if they are high relative the to size of the coefficient itself, it's a reason for a concern about possible multicollinearity. Let's check our suspicion using VIFs:

. vif Variable	VIF	1/VIF
age2 age educ mapres80 born sex	33.51 33.37 1.13 1.10 1.01 1.01	0.029845 0.029963 0.886374 0.911906 0.986930 0.987914
Mean VIF	11.86	

Indeed, high degree of multicollinearity. But luckily, we can avoid it. When including variables that are generated using other variables already in the model (as in this case, or when we want to enter a product of two variables to

model an interaction term), we should first mean-center the variable (only if it is continuous; don't mean-center dichotomous variables!). That's how we'd do it in this case: . sum age Variable Obs Mean Std. Dev. Min Max ______ age 2751 46.28281 17.37049 18 89 . gen agemean=age-r(mean) (14 missing values generated) . gen agemean2=agemean^2 (14 missing values generated) . reg agekdbrn educ born sex mapres80 agemean agemean2, beta Source | SS df MS Number of obs = 1089 -----_ _ _ _ _ _ _ _ F(6, 1082) = 44.22Model | 6138.53316 6 1023.08886 Prob > F = 0.0000R-squared = 0.1969Residual | 25034.1298 1082 23.1369037 Adj R-squared = 0.1925 Total | 31172.663 1088 28.6513447 Root MSE = 4.8101 _____ agekdbrn | Coef. Std. Err. t P>|t| Beta .5678949 .0569661 9.97 0.000 1.567736 .5723843 2.74 0.006 educ | .2884756 born1.567736.57238432.740.006sex-2.140989.3028244-7.070.000 born .0751117 -.1937892.0332034 .0117896 2.82 0.005 .0730284 .0105054 6.95 0.000 .080348 mapres80 agemean .2055801 agemean2 -.0022448 .0005551 -4.04 0.000 -.1209343_cons | 17.11274 1.126117 15.20 0.000 · _____ . vif Variable | VIF 1/VIF -----agemean2 | 1.20 0.829918 agemean | 1.18 0.848643 educ | 1.13 0.886374 1.10 0.911906 mapres80 | 1.01 0.986930 born | 1.01 0.987914 sex ------Mean VIF 1.11 We can see that the multicollinearity problem has been solved. We also note that the squared term is significant. To better understand what this means substantively, we'll generate a graph: . adjust educ born sex mapres80 if e(sample), gen(pred1) _____ Dependent variable: agekdbrn Command: regress Created variable: pred1 Variables left as is: age, age2 Covariates set to mean: educ = 13.316804, born = 1.0707071, sex = 1.6244261, mapres80 = 39.440773_____ All | xb _____ 23.6648 _____ Key: xb = Linear Prediction

. line pred1 age, sort

This doesn't quite replicate what we saw on lowess plot, so the relationship of age and agekdbrn is likely still misspecified. Let's try cube:

. gen agemean3=agemean^3

(14 missing values generated) . reg_agekdbrn_educ_born_sex_mapres80_agemean_agemean2_agemean3

. reg agekdbi	rn educ born s	ex mapres80	agemean	agemean	2 agemean3	
Source	SS	df	MS		Number of obs	= 1089
	+				F(7, 1081)	= 49.39
Model	7554.31674	7 1079	.18811		Prob > F	= 0.0000
Residual	23618.3463	1081 21.8	486089		R-squared	= 0.2423
	+				Adj R-squared	= 0.2374
Total	31172.663	1088 28.6	513447		Root MSE	= 4.6742
agekdbrn	 Coef.	Std Err	 +	 P> t	[95% Conf.	Intervall
	+					
educ	.581195	.055382	10.49	0.000	.4725265	.6898634
born	1.292907	.5572673	2.32	0.021		2.386355
sex	-2.117214	.2942876	-7.19	0.000	-2.694654	-1.539774
mapres80	.0349051	.0114586	3.05	0.002	.0124215	.0573887
agemean	0424837	.0176105	-2.41	0.016	0770384	007929
agemean2	0059131	.0007061	-8.37	0.000	0072987	0045275
agemean3	.0002359	.0000293	8.05	0.000	.0001784	.0002934
_cons	17.58535	1.09589	16.05	0.000	15.43504	19.73566
. adjust educ	born sex mapr	res80 if e(s	ample), g	gen(pred	2)	
Dependent	variable: ag	ekdbrn	Command:	regress		
	d variable: pr					
Variables 1	left as is: ag	gemean, agem	ean2, age	emean3		
Covariates se	et to mean: ed	luc = 13.316	804, bori	n = 1.07	07071, sex = 1	.6244261,
mapres80 = 39						
All	xb					
+	22 6640					
	23.6648					
Key: xb	= Linear Pr	ediction				

. line pred2 age, sort

This looks much better. Note that at other times, after looking at a lowess plot, we might prefer to represent the variable as a series of dummies. E.g., after we look at the lowess plot of education, we might prefer representing education as a series of dummy variables corresponding to respondent's level of education (less than high school, high school, some college etc):

4. Outliers, Leverage Points, and Influential Observations.

A single observation that is substantially different from other observations can make a large difference in the results of regression analysis. For this reason, unusual observations (or small groups of unusual observations) should be identified and examined. There are three ways that an observation can be unusual:

<u>Outliers</u>: In univariate context, people often refer to observations with extreme values (unusually high or low) as outliers. But in regression models, an outlier is an observation that has unusual value of the dependent variable given its values of the independent variables – that is, the relationship between the dependent variable and the independent ones is different for an outlier than for the other data points. Graphically an outlier is far from the pattern defined by other data points. Typically, in regression an outlier has a large residual. Leverage points: An observation with an extreme value (either very high or very low) on a single predictor variable or on a combination of predictors is called a point with high leverage. Leverage is a measure of how far a value of an independent variable deviates from the mean of that variable. In the multivariate context, leverage is a measure of each observation's distance from the multidimensional centroid in the space formed by all the predictors. These leverage points can have an effect on the estimate of regression coefficients.

<u>Influential Observations</u>: A combination of the previous two characteristics produces influential observations. An observation is considered influential if removing the observation substantially changes the estimates of coefficients. Observations that have just one of these two characteristics (either high leverage points or high leverage points but not both) do not tend to be influential.

Thus, we want to identify outliers and leverage points, and especially those observations that are both, to assess and possibly minimize their impact on our regression model. Furthermore, outliers, even when they are not influential in terms of coefficient estimates, can unduly inflate the error variance. Their presence may also signal that our model failed to capture some important factors (i.e., indicate potential model specification problem).

We usually start identifying potential outliers and leverage points when conducting univariate and bivariate examination of the data. E.g. when examining the distribution of educ, we would be concerned about those with very few years of education:

. histogram educ

When examining the distribution of mother's prestige, we'd be concerned about those with very high values:

. histogram mapres80

Such observations are likely high leverage points. We might check their ID numbers to be aware of this. E.g., let's get a scatterplot of both of these predictors with observation ID labels:

. scatter educ mapres80, mlabel(id)

While univariate examination allows us to identify potential leverage points, bivariate examination will help identify both potential leverage points and outliers. E.g., we can label observations in the lowess plot to see what potential outliers and leverage points we find:

. scatter agekdbrn age, mlabel(id) || lowess agekdbrn age, lcolor(red) || lfit agekdbrn age, lcolor(blue)

2109, 2460, and 1643 are outliers with respect to this bivariate relationship, but they are not high leverage because these are not extreme values on age variable. We do not see any high leverage points or influential observations here.

. scatter agekdbrn mapres80, mlabel(id) || lowess agekdbrn mapres80, lcolor(red) || lfit agekdbrn mapres80, lcolor(blue)

Here we see 2460 as an outlier and we also see two leverage points that have very high values of mother's prestige score, these are 2366 and 1747: . list id mapres80 if mapres80>80 & mapres80~=. & agekdbrn~=.

	+	+
	id	mapres80
1896.	2366	86
2447.	1747	86
	+	+

It does not appear that these points are also outliers in terms of their dependent variable value, however, so most likely these do not have high level of influence. Next, we can continue our search for outliers, leverage points, and influential observations in the multivariate context. To identify outliers, we want to find observations with high residuals, and to identify observations with high leverage, we can use so-called hat-values -- these measure each observation's distance from the multidimensional centroid in the space formed by all the regressors. We can also use various influence statistics that help us identify influential observations by combining information on outlierness and leverage.

To obtain these various statistics in Stata, we use predict command. Here are some values we can obtain using predict, with the rule-of-thumb cutoff values for statistics used in outlier diagnostics:

Predict option	Result	Cutoff value (n=sample size, k=parameters)
xb	xb, fitted values (linear prediction); the default	
stdp	standard error of linear prediction	
residuals	residuals	
stdr	standard error of the residual	
rstandard	standardized residuals (residuals divided by standard error)	
rstudent	studentized (jackknifed) residuals, recommended for outlier diagnostics (for each observation, the residual is divided by the standard error obtained from a model that includes a dummy	rstudent > 2
	variable for that specific observation)	
lev (hat)	hat values, measures of leverage	Hat $>(2k+2)/n$
*dfits	(diagonal elements of hat matrix)	
^dllts	DFITS, influence statistic based on studentized residuals and hat values	DFits >2*sqrt(k/n)
*welsch	Welsch Distance, a variation on dfits	WelschD >3*sqrt(k)
cooksd	Cook's distance, an influence statistic	$ Werschill > 3^{n} Sqrt(K)$ CooksD >4/n
COOKSU	based on dfits and indicating the	COOKSD 24/11
	distance between coefficient vectors	
	when the jth observation is omitted	
*covratio	COVRATIO, a measure of the influence of	CovRatio-1 >3k/n
	the jth observation on the variance-	
	covariance matrix of the estimates	
<pre>*dfbeta(varname)</pre>	DFBETA, a measure of the influence of	DFBeta > 2/sqrt(n)
	the jth observation on each coefficient	
	(the difference between the regression	
	coefficient when the jth observation is	
	included and when it is excluded,	
	divided by the estimated standard error	
	of the coefficient)	
	atistics are only available for the estima	
unstarred statist	ics are available both in and out of sampl	e; type predict

unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

So we could obtain and individually examine various outlier and leverage statistics, e.g. .predict hats, lev .predict resid, resid

.predict rstudent, rstudent

For instance, we can then find the observations with the highest leverage values:

. sum	. sum hats if e(sample), det								
	Leverage								
	Percentiles	Smallest							
1%	.00176	.0015777							
5%	.0021025	.0016196							
10%	.0023401	.00162	Obs	1089					
25%	.0030041	.0016511	Sum of Wgt.	1089					
50%	.0041908		Mean	.0055096					
		Largest	Std. Dev.	.004043					
75%	.006332	.0236406							
90%	.010143	.0258473	Variance	.0000163					
95%	.0155289	.0302377	Skewness	2.466179					
99%	.0198167	.038942	Kurtosis	11.40481					

. list id hats if hats>.023 & hats~=. & e(sample)

	+	+
	id	hats
3.	1934	.0302377
10.	112	.038942
17.	1230	.0236406
2447.	1747	.0258473
	+	+

But the best way to graphically examine both leverage values and residuals at the same time is the leverage versus the residuals squared plot (L-R plot) (you can replicate it by creating a scatterplot of hat values and residuals squared):

.lvr2plot, mlabel(id)

There are many observations with high leverage and residuals; we would be especially concerned about 112, 1934, 2460, 1452 etc.

Added variable plots (avplots) is another tool we can use to identify outliers and leverage points - in thus case, we can see them in relationship to the slopes. Note that you can also obtain these plots one by one using avplot command, e.g. avplot educ, mlabel(id)


```
.avplots, mlabel(id)
```

Observation #2460 is the first one that looks especially suspicious - that's an outlier, a high residual observation; same thing with 1305. Looks like these are people who had their first child very late in life. As for high leverage observations, not too many stand out on this graph, although #112 might be one - looks like that might be a foreign born individual with very little education who had their first child relatively late in life.

To supplement these graphs, we can use a number of influence statistics that combine information on outlier status and leverage -- DFITS, Welsch's D, Cook's D, COVRATIO, and DFBETAS. It is usually a good idea to obtain a range of those to decide which cases are really problematic.

It makes sense to list the values of your dependent and independent variables
for those observations that have values of these measures above the suggested
cutoffs.
E.g. we get Cook's D (based on hat values and standardized residuals):
. predict cooksd if e(sample), cooksd
*Don't forget to specify "if e(sample)" here - Cook's D is available out of
sample as well!

*NOTE: if you already generated a variable with this name (e.g. cooksd) but want to reuse the name, just use the drop command first: e.g., drop cooksd Now we list those observations with high Cook's distance. The cutoff is 4/n so in this case, it's 4/1089=.00367309.

. sort cooksd

. list id agekdbrn educ born sex mapres80 age cooksd if cooksd>=4/1089 & cooksd~=.

+	+							
	id	agekdbrn	educ	born	sex	mapres80	age	cooksd
1031.	1394	30	15	no	female	28	33	.0036766
1032.	63	19	19	yes	female	34	64	.003683
1033.	2484	37	17	yes	female	52	56	.0037003
1034.	1906	29	10	no	male	23	39	.0037224
1035.	994	38	15	yes	female	33	41	.003788
1036.	22	19	12	no	male	44	23	.0038182
1037.	1402	37	12	yes	male	33	42	.0038667
1038.	742	36	13	yes	male	28	39	.0038726
1039.	366	37	17	yes	male	66	44	.0041899
1040.	2265	39	17	yes	male	52	55	.004212
1041.	2703	16	16	yes	male	23	45	.004219
1042.	1284	17	12	yes	female	64	76	.0043403
1043.	2764	35	12	yes	male	23	75	.0044005
1044.	1114	39	12	yes	female	46	46	.0044603
1045.	2653	38	12	yes	male	32	43	.0044713
1046.	322	13	16	yes	female	20	38	.0044766
1047.	352	16	9	no	female	44	49	.0045471
1048.	1382	39	12	yes	male	35	45	.0045595
1049.	1990	42	13	yes	female	34	46	.0046982
1050.	514	16	11	no	female	40	42	.0047655
1051.	1186	30	12	no	female	30	44	.0049131
1052.	669	37	18	yes	female	32	49	.005042
1053.	1428	17	20	yes	female	32	28	.0052439
1054.	753	35	13	yes	female	17	51	.0053052
1055.	797	34	12	yes	female	35	83	.0054951
1056.	126	38	15	yes	female	28	65	.0056446
1057.	1824	41	16	yes	male	34	49	.0058367
1058.	б	40	12	yes	male	29	47	.0059349
1059.	447	26	6	no	female	23	55	.0060603
1060.	1549	32	14	no	female	66 	34	.0061423
1061.	1066	32	13	no	female	47	40	.0062896
1062.	612	36	18	yes	female	23	73	.0063017
1063.	508	18	14	no	female	64	40	.0064009
1064.	1747	24	17	no	male	86	36	.0065845
1065.	1189	39	16	yes	male	23	62	.0066001
1066.	773	37	20	yes	female	28	54	.0070942
1067.	2545	42	18	yes	male	46	54	.0072636
1068.	1709	38	20	yes	female	35	47	.0073801
1069.	541	35	18	no	female	46	37	.0075467
1070.	524	16	19	yes	male	42	34	.0075767

430	35	18	no	female	44	38	.0075794
1194	21	17	no	female	66	60	.0079331
435	19	12	no	male	36	67	.0079604
1172	33	14	no	female	32	39	.0080491
411	21	18	no	male	51	30	.0082472
1050							
							.0083125
			-				.0090088
			yes				.009117
1711	27	2	yes	male	36	69	.0093139
114	37	12	yes	female	66	47	.0096068
2156	 25	 2		 malo	20	22	.0104581
			-				.0112643
			-				.0117106
			-				.0125958
2415	35	./	yes	female	42	48	.0133718
1982	37	 8	Veq	male	 ۲۵	83	.0139673
		-	-				.0191272
							.0251248
			-				.0434919
	34	2	no	maie	6.3	3 X	. 0434919 1
	1194 435 1172 411 1952 1575 1934 1711	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1194 21 17 no female 435 19 12 no male 1172 33 14 no female 411 21 18 no male	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1194 21 17 no female 66 60 435 19 12 no male 36 67 1172 33 14 no female 32 39 411 21 18 no male 51 30

That's quite a few, the largest Cook's D belong to observations 112, 2460, and 1452. All of those stood out in graphs as well, so we want to investigate those, but first we might want to examine other indices (e.g. DFITS, COVRATIO, etc) as well. In the end, we want to identify and further investigate those observations that are consistently problematic across a range of diagnostic tools.

E.g., we can combine the information on high leverage, high studentized residual, and Cook's D: .scatter hats student [w=cooksd] , mfc(white)

To identify problematic observations, let's replace circles with ID numbers: . scatter hats student [w=cooksd] , mlabel(id)

Another set of index measures of influence, DFBETAs, focuses on one regression coefficient at a time. It is a normalized measure of the effect of each specific observation on a regression coefficient, estimated by omitting each observation and comparing the resulting coefficient to the coefficient with that observation included in the data. Positive DFBETA value indicates that an observation increases the value of the coefficient; negative value indicates a decrease in the coefficient due to that observation.

. dfbeta

(1676	missing	values	generated)	
			DFeduc:	DFbeta(educ)
(1676	missing	values	generated)	
			DFborn:	DFbeta(born)
(1676	missing	values	generated)	
			DFsex:	DFbeta(sex)
(1676	missing	values	generated)	
			DFmapres80:	DFbeta(mapres80)
(1676	missing	values	generated)	
			DFage:	DFbeta(age)

. di 2/sqrt(1089) .06060606

. scatter DFage DFsex DFborn DFeduc DFmapres80 id, yline(.06 -.06) mlabel(id id id id)

Observations 112 and 2460 seem to have influence on a number of coefficients; others seem to have effects on specific coefficients, so need to look into those which have particularly large effects.

Remedies:

Once you detected influential data points, you need to decide what to do with them. Typically, a non-influential outliers and leverage points do not concern us much, although outliers do increase error variance. We also want to watch out for clusters of outliers, which may suggest an omitted variable. But influential points can have dramatic effects, and we definitely want to investigate those. Once we find them, there is no one clear-cut solution. They should not be ignored, but neither should they be automatically deleted. Typically, the presence of an influential point can mean one of the following: A. Our model is correct, the influential point can be attributed to some kind of measurement error

B. The value of the influential point is observed correctly, but our model is not correct in that it cannot model the influential point well. Possible reasons for that: (a) The relationship between the dependent and the independent variable is not linear in the interval of values that includes the influential point; (b) There is another explanatory variable that can help account for that influential point; (c) The model has heteroskedasticity problems.

Unfortunately, often it is not possible to determine which one is the case. But here's what you can do:

1. You have to investigate what makes these data points unusual -- make sure that you examine their values on all of the variables you use. This will help identify potential data entry errors or might provide other clues as to why these data points are unusual. E.g. we could check #112:

. list agekdbrn educ born sex mapres80 age if id==112

	+					+
	agekdbrn	educ	born	sex	mapres80	age
10.	32	2	no	male	 63	38

+-----+

5	5		bles to compare age if e(sample Std. Dev.		Max
aqekdbrn	 1089	23.66483	 5.352695	 11	 50
educ	1089	13.3168	2.719027	0	20
born	1089	1.070707	.2564527	1	2
sex	1089	1.624426	.4844932	1	2
mapres80	1089	39.44077	12.95284	17	86
age	1089	46.1258	15.06822	19	89

2. If you are considering omitting unusual data, you should investigate whether omitting these data points changes the results of your regression model. Try omitting them one by one and compare the coefficients with and without them: are there large changes? Let's check what happens if we omit #112: . reg agekdbrn educ born sex mapres80 age, beta

Source Model Residual Total	5760.17098 25412.492 31172.663	df 5 1083	MS 1152.0342 23.4649049 28.6513447	A	Number of obs = 1089 F(5, 1083) = 49.10 Prob > F = 0.0000 R-squared = 0.1848 Adj R-squared = 0.1810 Root MSE = 4.8441
agekdbrn	Coef.	Std. E		P> t	Beta
educ born sex mapres80 age _cons	.6158833 1.679078 -2.217823 .0331945 .0582643 13.27142	.05610 .57575 .30436 .01187 .00992 1.2522	599 2.92 525 -7.29 728 2.80 202 5.87	0.000 0.004 0.000 0.005 0.000 0.000	.3128524 .0804462 2007438 .0803266 .1640182
. reg agekdbrr Source Model Residual Total	educ born se SS 5841.74787 25261.3762 31103.1241	df 5 1082	es80 age if ic MS 1168.34957 23.3469281 28.6137296	d∼=112,	beta Number of obs = 1088 F(5, 1082) = 50.04 Prob > F = 0.0000 R-squared = 0.1878 Adj R-squared = 0.1841 Root MSE = 4.8319
Source Model Residual	SS 5841.74787 25261.3762	df 5 1082	MS 1168.34957 23.3469281 28.6137296	d~=112, P> t	Number of obs = 1088 F(5, 1082) = 50.04 Prob > F = 0.0000 R-squared = 0.1878 Adj R-squared = 0.1841

The actual effect of that observation on the coefficients of educ, mapres80, and born are rather pretty small; for each, beta changes by about 0.01. Also, try omitting the most persistent influential points as a group and examine the effects. If there are large changes in coefficients, you might use that to justify omitting a few (but only very few) observations from the model - but you will also have to explain what is so special about these cases.

3. To reduce the incidence of high leverage points, consider transforming skewed variables and/or topcoding/bottomcoding variables to bring univariate outliers closer to the rest of the distribution (e.g. coding incomes of >\$100,000 to \$100,000 so that these high values do not stand out).

4. If unusual data come in clusters, you may have to introduce another variable to control for their unusualness, or you might want to deal with them in a separate regression model.

5. Robust regression is another option when one observes substantial problems with influential data. The Stata rreg command performs a robust regression using iteratively reweighted least squares, i.e., assigning a weight to each observation with higher weights given to better behaved observations, while extremely unusual data can have their weights set to zero so that they are not included in the analysis at all.

. rreg agekdbrn educ born sex mapres80 age, gen(wt) Robust regression Number of obs = 108 F(5, 1083) = 52.3 Prob > F = 0.000								
agekdbrn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
educ	.6518023	.0539119	12.09	0.000	.5460186	.7575859		
born	1.792079	.5532063	3.24	0.001	.7066014	2.877556		
sex	-2.012778	.29244	-6.88	0.000	-2.586591	-1.438965		
mapres80	.0275798	.0114078	2.42	0.016	.005196	.0499637		
age	.0522715	.0095316	5.48	0.000	.033569	.070974		
_cons	12.34444	1.203239	10.26	0.000	9.983493	14.70538		

. sum wt, det

Robust Regression Weight

	Percentiles	Smallest		
1%	.2138941	0		
5%	.5965052	.0007363		
10%	.7419349	.0035576	Obs	1089
25%	.8782627	.0726816	Sum of Wgt.	1089
50%	.9564363		Mean	.9001565
		Largest	Std. Dev.	.1513337
75%	.988214	.9999998		
90%	.9983087	.9999999	Variance	.0229019
95%	.9996306	1	Skewness	-2.926814
99%	.9999847	1	Kurtosis	12.98754

Comparing the robust regression results with the OLS results on the previous page, we see that even though there are a few small differences, the coefficients, standard errors, and p-values are quite similar. Despite the minor problems with influential data that we observed while doing our diagnostics, the robust regression analysis yielded quite similar results suggesting that these problems are indeed minor. If the results of OLS and robust regression were substantially different, we would need to further investigate what problems in our OLS model caused the difference. If it is impossible to resolve such problems, then the robust regression results should be viewed as more trustworthy.

5. Additivity.

While there are no explicit tests for additivity (with the exception of the broad "linktest" command mentioned above), we should always use our theory insights to consider the need for interactions. We can have interactions between dummies (or sets of dummies), a dummy (or a set of dummies) and a continuous variable, or two continuous variables. To avoid multicollinearity problems, you should code your dummies 0/1 and mean-center those continuous variables that are involved in interaction terms.

. gen sexd=sex-1 . gen bornd=born-1 (6 missing values generated) . for var age educ mapres80: sum $X \setminus gen Xmean=X-r(mean)$ -> sum age Obs Variable Mean Std. Dev. Min Max _____ ----+age | 2751 46.28281 17.37049 18 89 -> gen agemean=age-r(mean) (14 missing values generated) -> sum educ Variable | Obs Mean Std. Dev. Min Max ______+ educ | 2753 13.36397 2.973924 0 2.0 -> gen educmean=educ-r(mean) (12 missing values generated) -> sum mapres80 Variable | Obs Mean Std. Dev. Min Max _____ _____ mapres80 | 1619 40.96912 13.63189 17 86 -> gen mapres80mean=mapres80-r(mean) (1146 missing values generated) A user-written program "fitint" helps find statistically significant two-way interactions. . net search fitint Click on: fitint from http://fmwww.bc.edu/RePEc/bocode/f . fitint reg agekdbrn bornd sexd agemean educmean mapres80mean, twoway(bornd sexd agemean educmean mapres80mean) factor(bornd sexd) Source SS df MS 1089 Number of obs = F(15, 1073) = 17.65_____ Prob > F = 0.0000 R-squared = 0.1979 Model | 6169.67284 15 411.311523 Residual | 25002.9902 1073 23.301948 _____ Adj R-squared = 0.1867Total | 31172.663 1088 28.6513447 Root MSE = 4.8272_____ t P>|t| Coef. Std. Err. [95% Conf. Interval] agekdbrn _Ibornd_1 | 1.710533 .9779923 1.75 0.081 -.2084614 3.629527 _Isexd_1 | -2.21852 .3179507 -6.98 0.000 -2.842395 -1.594644 agemean.0587138.01714393.420.001.0250744.0923532educmean.4551926.08883085.120.000.2808908.6294943mapres80mean.033156.02036741.630.104-.0068085.0731205 _Ibornd_1 | (dropped)
_Isexd_1 _IborXsex_~1 _Ibornd_1	(dropped .12111 (dropped	57 1.271076	0.10	0.924	-2	.372961	2.615193
agemean _IborXagem~1 _Ibornd_1	(dropped) .004840 (dropped)	59 .0568729 d)	0.09	0.932		1067477	.1164415
educmean _IborXeduc~1 _Ibornd_1 mapres80mean	(dropped 292204 (dropped (dropped	46 .210566 d)	-1.39	0.166		7053724	.1209631
_IborXmapr~1 _Isexd_1	.00467 (dropped)	.0414082	0.11	0.910		0765743	.0859261
_ISEXAgem~1 _Isexd_1	003142 (dropped	.0207363	-0.15	0.880) –	.043831	.0375455
 _IsexXeduc~1 _Isexd_1	.39193 (dropped	.1146716	3.42	0.001	•	1669259	.6169381
_IsexXmapr~1	00051	.024932	-0.02	0.983		0494397	.0484024
13_6	00388		-1.02	0.309		0113858	.0036088
	.00044		0.54	0.587		0011732	.0020706
146	1						
156	.00339		0.77	0.443		.005288	.0120717
_cons	24.980	.2579745	96.83	0.000		24.4745	25.48688
Fitting and te	esting anv	interactions	and any m	nain eff	ects n	ot included	E
TH THEFACETOR	<u>n tarma 11a</u>	$n\alpha$ the retio	of the me	an gaus	ro orr	or of each	
						or of each	_
term and the m							2
term and the m							C
term and the m Model summary	residual mo	ean square er	ror to obt	ain an			
term and the m	residual mo	ean square er	ror to obt				
Model summary Number of obse	residual mo	ean square ern	ror to obt	ain an			2
term and the m Model summary Number of obse Regression cor	residual ma ervations m nmand:	ean square ern used in estima regress	ror to obt	ain an			2
term and the m Model summary Number of obse Regression com Dependent varia	residual ma ervations m nmand:	ean square ern used in estima regress agekdbrn	ror to obt	ain an			2
term and the m Model summary Number of obse Regression com Dependent vari Residual MSE:	residual me ervations m mand: iable:	ean square ern used in estima regress agekdbrn 23.30	ror to obt	ain an			2
term and the m Model summary Number of obse Regression com Dependent varia	residual me ervations m mand: iable:	ean square ern used in estima regress agekdbrn	ror to obt	ain an			2
term and the m Model summary Number of obse Regression com Dependent vari Residual MSE:	residual me ervations m mand: iable: eedom:	ean square ern used in estima regress agekdbrn 23.30	ror to obt	ain an			
term and the m Model summary Number of obse Regression cor Dependent vari Residual MSE: degrees of fre Term	residual me ervations m mand: iable: eedom: 	ean square ern used in estima regress agekdbrn 23.30 1073 Mean square	ror to obt ation: F ratio	df1	F rati df2	o statistic	
term and the m Model summary Number of obse Regression cor Dependent vari Residual MSE: degrees of fre Term i.bornd*i.se	residual me ervations m mand: iable: eedom: katoring exd	ean square ern used in estima regress agekdbrn 23.30 1073 Mean square 0.21	ror to obt ation: F ratio	df1	F rati df2 1073	o statistic	 7 L
term and the m Model summary Number of obse Regression com Dependent vari Residual MSE: degrees of fre Term i.bornd*i.se i.bornd*agen	residual me ervations mand: iable: eedom: exd nean	ean square ern used in estima regress agekdbrn 23.30 1073 Mean square 0.21 0.17	ror to obt 	df1	F rati df2 1073 1073	o statistic P>F 0.9241 0.9321	 L
term and the m Model summary Number of obse Regression cor Dependent vari Residual MSE: degrees of fre Term i.bornd*i.se	residual me ervations mand: iable: eedom: exd nean	ean square ern used in estima regress agekdbrn 23.30 1073 Mean square 0.21 0.17 44.87	ror to obt ation: F ratio	df1	F rati df2 1073	o statistic P>F 0.9241 0.9321 0.1655	 - L 5
term and the m Model summary Number of obse Regression com Dependent vari Residual MSE: degrees of fre Term i.bornd*i.se i.bornd*agen	residual me ervations mand: iable: eedom: exd nean nean	ean square ern used in estima regress agekdbrn 23.30 1073 Mean square 0.21 0.17	ror to obt 	df1	F rati df2 1073 1073	o statistic P>F 	 - L 5
term and the m Model summary Number of obse Regression cor Dependent vari Residual MSE: degrees of fre 	residual me ervations mand: iable: eedom: exd nean nean es80mean	ean square ern used in estima regress agekdbrn 23.30 1073 Mean square 0.21 0.17 44.87 0.30	ror to obt ation: F ratio 0.01 0.01 1.93 0.01	df1 1 1 1 1 1 1	F rati df2 1073 1073 1073 1073	o statistic 	 7 L L
term and the m Model summary Number of obse Regression com Dependent vari Residual MSE: degrees of fre 	residual me ervations mand: iable: eedom: 	ean square ern used in estima regress agekdbrn 23.30 1073 Mean square 0.21 0.17 44.87 0.30 0.54	ror to obt ation: F ratio 0.01 0.01 1.93 0.01 0.02	ain an 1089 dfl 1 1 1 1 1 1	F rati df2 1073 1073 1073 1073 1073	o statistic 	 7 L 5 5
term and the m Model summary Number of obse Regression com Dependent vari Residual MSE: degrees of fre 	residual me ervations mand: iable: eedom: 	ean square ern used in estima regress agekdbrn 23.30 1073 Mean square 0.21 0.17 44.87 0.30 0.54 272.21	ror to obt ation: F ratio 0.01 0.01 1.93 0.01 0.02 11.68	ain an 1089 dfl 1 1 1 1 1 1 1	F rati df2 1073 1073 1073 1073 1073 1073	o statistic 	 - L 5 L 5 7
term and the m Model summary Number of obse Regression cor Dependent vari Residual MSE: degrees of fre 	residual me ervations mand: iable: eedom: 	ean square ern used in estima regress agekdbrn 23.30 1073 Mean square 0.21 0.17 44.87 0.30 0.54 272.21 0.01	ror to obt ation: F ratio 0.01 0.01 1.93 0.01 0.02 11.68 0.00	ain an 1089 dfl 1 1 1 1 1 1 1 1 1	F rati df2 1073 1073 1073 1073 1073 1073 1073 1073	o statistic 	 7 1 5 1 5 7 1
term and the m Model summary Number of obse Regression cor Dependent vari Residual MSE: degrees of fre 	residual me ervations mand: iable: eedom: 	ean square ern regress agekdbrn 23.30 1073 Mean square 0.21 0.17 44.87 0.30 0.54 272.21 0.01 24.13	ror to obt ation: F ratio 0.01 0.01 1.93 0.01 0.02 11.68 0.00 1.04	ain an 1089 df1 1 1 1 1 1 1 1 1 1 1	F rati df2 1073 1073 1073 1073 1073 1073 1073 1073	o statistic 	 L L 5 L
term and the m Model summary Number of obse Regression cor Dependent vari Residual MSE: degrees of fre 	residual me ervations mand: iable: eedom: 	ean square ern regress agekdbrn 23.30 1073 Mean square 0.21 0.17 44.87 0.30 0.54 272.21 0.01 24.13 6.87	ror to obt ation: F ratio 0.01 0.01 1.93 0.01 0.02 11.68 0.00 1.04 0.29	ain an 1089 df1 1 1 1 1 1 1 1 1 1 1 1	F rati df2 1073 1073 1073 1073 1073 1073 1073 1073	o statistic 	 L L 5 L 2 5 L 2 5 L 2 5 - 1 L 2 5 1 - L 2 5 - L 2 - L 2 - L 2 L 2 - L 2 L 2 - - - -
term and the m Model summary Number of obse Regression cor Dependent vari Residual MSE: degrees of fre 	residual me ervations mand: iable: eedom: 	ean square ern regress agekdbrn 23.30 1073 Mean square 0.21 0.17 44.87 0.30 0.54 272.21 0.01 24.13	ror to obt ation: F ratio 0.01 0.01 1.93 0.01 0.02 11.68 0.00 1.04	ain an 1089 df1 1 1 1 1 1 1 1 1 1 1	F rati df2 1073 1073 1073 1073 1073 1073 1073 1073	o statistic 	 L L 5 L 2 5 L 2 5 L 2 5 - 1 L 2 5 1 - L 2 5 - L 2 5 - L 2 5 L 2 5 L 2 5 L 2 5 L 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

It appears that when all twoway interactions are tested simultaneously, the only one that is statistically significant is sex by education. We could also check each two-way interaction separately to make sure we did not miss anything by testing all simultaneously:

. for X in var bornd sexd agemean educmean mapres80mean: for Y in var bornd sexd agemean educmean mapres80mean: fitint reg agekdbrn bornd sexd agemean educmean mapres80mean, twoway(Y X) factor(bornd sexd) [output omitted] Note that you should always include main effect variables in addition to the interaction, because the interaction term can only be interpreted together with that main effect. Further, if you want to explore three-way interactions, the model should also include all possible two-way interactions in addition to main terms. For example:

. gen bornsex=bornd*sexd

(6 missing values generated)

. gen borneduc=bornd*educmean

(13 missing values generated)

- . gen educsex=educmean*sexd
- (12 missing values generated)

. gen educsexborn=educmean*sexd*bornd

(13 missing values generated)

. xi: reg agekdbrn bornd sexd agemean educmean mapres80mean bornsex borneduc educsex educsexborn

Source	SS	df	MS		Number of obs	
Model Residual	6152.90509 25019.7579		.656121 1879128		F(9, 1079) Prob > F R-squared Adj R-squared	$= 29.48 \\ = 0.0000 \\ = 0.1974 \\ = 0.1907$
Total	31172.663	1088 28.	6513447		Root MSE	= 4.8154
agekdbrn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
bornd sexd agemean educmean mapres80mean bornsex borneduc educsex educsexborn	1.779615 -2.220267 .0594442 .4461687 .0324834 .0946345 4745646 .3621368 .4750623	.9740461 .3134215 .0098793 .0831105 .0118427 1.204318 .2819971 .1124932 .3902632	$ \begin{array}{r} 1.83 \\ -7.08 \\ 6.02 \\ 5.37 \\ 2.74 \\ 0.08 \\ -1.68 \\ 3.22 \\ 1.22 \\ 1.00 \\ 86 \end{array} $	0.068 0.000 0.000 0.000 0.006 0.937 0.093 0.001 0.224	131624 -2.835252 .0400593 .2830922 .0092461 -2.268437 -1.027889 .1414065 2906985	3.690854 -1.605282 .078829 .6092451 .0557208 2.457706 .0787601 .5828671 1.240823
_cons	25.00961	.2479526	100.86	0.000	24.52309	25.49614

But we'll focus on two-way interactions for now, and in order to explore how to interpret them, we'll review 4 examples: (1) an interaction of two dichotomous variables; (2) an interaction of a dummy variable and a continuous variable; (3) an interaction of a set of dummy variables and a continuous variable; (4) an interaction of two continuous variables.

Example 1: Two dichotomous variables

•	xi: reg	agekdbrn educ i.bornd*sexd mapres80	age
4	hornd	Thornd 0 1 (natural)	v andod ·

i.bornd i.bornd*sexd	_Ibornd_0 IborXsex		(natural) (coded as	-	; _Ibornd_0 omitted)
Source		df	MS		Number of obs = 1089 F(6, 1082) = 40.91
Model Residual	5764.17997 25408.483	6 1082	960.696662 23.4828863		Prob > F = 0.0000 R-squared = 0.1849 Adj R-squared = 0.1804
 Total	31172.663	1088	28.6513447		Root MSE = 4.8459
agekdbrn	Coef.	Std. H	Err. t	P> t	[95% Conf. Interval]
educ _Ibornd_1	.6165377 1.358118	.05619 .96704		0.000 0.160	.5063552 .7267202 5393752 3.25561

sexd	-2.251548	.3152298	-7.14	0.000	-2.870079	-1.633017
_IborXsexd_1	.4964787	1.201596	0.41	0.680	-1.861244	2.854201
mapres80	.0333659	.0118846	2.81	0.005	.0100464	.0566855
age	.0584314	.0099322	5.88	0.000	.0389428	.07792
_cons	12.73045	.9671152	13.16	0.000	10.83281	14.62808

The interaction is not statistically significant, but let's suppose it would be. Then we can interpret the three coefficients to conclude that foreign born men have children 1.4 years later than native born men, native born women have children 2.3 years earlier than native born men, and foreign born women have children 0.4 of a year earlier than native born men: (1.4-2.3+.5)=-.4

Although it doesn't make sense to examine an interaction of two dummy variables graphically, we can use "adjust" command to help us interpret this interaction: . adjust educ mapres80 age if e(sample), by(sexd bornd)

Dependent variable: agekdbrn Command: regress

Variables left as is: _Ibornd_1, _IborXsexd_1

Covariates set to mean: educ = 13.316804, mapres80 = 39.440773, age = 46.125805

	borne	d
sexd	j o	1
	+	
0	24.9519	26.31
1	24.9519 22.7004	24.555
Key:	Linear Pre	diction

These are the predicted values of agekdbrn given average values of education, age, and mother's occupational prestige.

Example 2: A dummy variable and a continuous variable

. xi: reg agekdbrn i.bornd*educmean sexd mapres80 age i.borndIbornd_0-1 (naturally coded; _Ibornd_0 omitted) i.bornd*educm~nIborXeducm_# (coded as above)						
Source	SS	df	MS		Number of obs	
Model Residual	5793.5421 25379.1209		.590349 4557494		F(6, 1082) Prob > F R-squared Adj R-squared	= 0.0000 = 0.1859
Total	31172.663	1088 28.	6513447		Root MSE	= 4.8431
agekdbrn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_Ibornd_1 educmean _IborXeduc~1 sexd mapres80 age cons	1.716336 .6352486 2323323 -2.229199 .0334778 .0587405 20.93833	.5764944 .058401 .194782 .3044525 .0118729 .0099263 .7498733	2.98 10.88 -1.19 -7.32 2.82 5.92 27.92	0.003 0.000 0.233 0.000 0.005 0.000 0.000	.585162 .5206565 6145255 -2.826583 .0101813 .0392636 19.46696	2.847509 .7498407 .1498609 -1.631814 .0567743 .0782175 22.4097

Again, no significant interaction, but for practice, we'll interpret the results. Among those with average education (13.4 years), foreign born have

kids 1.7 years later than native born. Among native born individuals, one year increase in education is associated with 0.6 of a year increase in the age of having kids. Finally, among foreign born individuals, one year increase in education is associated with (.63-.23)=.4 of a year increase in the age of having kids. We could specify this another way to see separately the effects of education in the native born and foreign born groups:

. gen educfb=educmean*bornd
(13 missing values generated)
. gen educnb=educmean
(12 missing values generated)
. replace educnb=0 if bornd==1
(256 real changes made)

. reg agekdbrr Source	n bornd educfb SS	educnb sexo df	d mapres8 MS	30 age	Number of obs F(6, 1082)	
Model Residual					Prob > F R-squared Adj R-squared	= 0.0000 = 0.1859
Total	31172.663	1088 28.65	513447		Root MSE	
agekdbrn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	.4029163 .6352486 -2.229199 .0334778 .0587405 20.93833 an see that th	.3044525 .0118729 .0099263 .7498733 e effect of	2.15 10.88 -7.32 2.82 5.92 27.92 educatio	0.005 0.000 0.000 on is si	.0356939 .5206565 -2.826583 .0101813 .0392636 19.46696 	.7498407 -1.631814 .0567743 .0782175 22.4097
Finally, we ca . adjust sexd	an again exami mapres80 age 				ally.	
Created Variables]	dent variable: d variable: pr left as is: bo et to mean: se	ed1 rnd, educfb	, educnb		ess 39.440773, age	=
All	xb					
	23.6648					
Key: xb	= Linear Pr	ediction				
twoway (line	predleduci	f bornd0	sort col	lor(red)	legend(label(1 "nativo

. twoway (line pred1 educ if bornd==0, sort color(red) legend(label(1 "native born"))) (line pred1 educ if bornd==1, sort color(blue) legend(label(2 "foreign born")) ytitle("Respondent's Age When 1st Child Was Born"))

Alternatively, we could split pred1 into two variables (or if needed more): .separate pred1, by(bornd)

This would generate two variables, pred10 and pred11, which we can graph: .line pred10 pred11 educ, lcolor(red blue) sort

. xi: reg age i.marital i.mari~l*educ~	ekdbrn bornd i _Imarital ~n ImarXedu	_1-5		ly coded	es80 age ; _Imarital_1 omitted)
Source	SS	df	MS		Number of obs = 1089
Model Residual	+ 6540.34346 24632.3195		9137856		F(13, 1075) = 21.96 Prob > F = 0.0000 R-squared = 0.2098 Adj R-squared = 0.2003
Total	31172.663	1088 28.	6513447		Root MSE = 4.7868
agekdbrn	Coef.	Std. Err.	t	 P> t	[95% Conf. Interval]
bornd _Imarital_2 _Imarital_3 _Imarital_4 _Imarital_5	1.536577 8946254 9166076 -1.944692 -2.55648	.5729824 .626208 .3889825 .7095625 .5380556	2.68 -1.43 -2.36 -2.74 -4.75	0.007 0.153 0.019 0.006 0.000	.4122865 2.660868 -2.123354 .3341031 -1.6798591533567 -3.3369775524077 -3.612238 -1.500722

educmean	.6467199	.0727279	8.89	0.000	.504015	.7894247
_ImarXeduc~2	3294696	.167311	-1.97	0.049	6577629	0011764
_ImarXeduc~3	.0213546	.151949	0.14	0.888	2767956	.3195049
_ImarXeduc~4	0935184	.2455722	-0.38	0.703	5753736	.3883368
_ImarXeduc~5	527267	.2268917	-2.32	0.020	9724677	0820662
sexd	-2.028997	.3066702	-6.62	0.000	-2.630737	-1.427257
mapres80	.0292701	.0118022	2.48	0.013	.0061121	.0524282
age	.0435388	.0117499	3.71	0.000	.0204835	.0665942
_cons	22.24782	.8245124	26.98	0.000	20.62999	23.86566

To test whether the set of interactions is jointly significant: . test _ImarXeducm_2 _ImarXeducm_3 _ImarXeducm_4 _ImarXeducm_5

(1)	_ImarXeducm_2 = 0
(2)	_ImarXeducm_3 = 0
(3)	_ImarXeducm_4 = 0
(4)	_ImarXeducm_5 = 0

F(4, 1075) = 2.22Prob > F = 0.0653

We cannot reject the null hypothesis, so we conclude that jointly these interaction effects are not statistically significant (they do not add significantly to the amount of variance explained by the model).

If we were to explore these interaction terms, however, we would want to get the estimates of separate slopes of education by marital status: . tab marital, gen(mardummy)

. tab marital, marital status	 Freq.		Cum.	
married widowed divorced separated never married	1,269 247 445 96		54.83 70.92	
<pre>. for num 1/5: -> gen educma (12 missing va -> gen educma (12 missing va -> gen educma (12 missing va -> gen educma (12 missing va -> gen educma (12 missing va . xi: reg age</pre>	rl=educmean*m lues generate r2=educmean*m lues generate r3=educmean*m lues generate r4=educmean*m lues generate r5=educmean*m lues generate kdbrn bornd i _Imarital	<pre>=educmean*ma ardummy1 d) ardummy2 d) ardummy3 d) ardummy4 d) ardummy5 d) .marital edu</pre>	ıcmar1-educma naturally co	ar5 sexd mapres80 age oded; _Imarital_1 omitted) Number of obs = 1089
Residual	6540.34346 24632.3195 31172.663	1075 22.91	137856	F(13, 1075) = 21.96 Prob > F = 0.0000 R-squared = 0.2098 Adj R-squared = 0.2003 Root MSE = 4.7868

agekdbrn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
bornd	1.536577	.5729824	2.68	0.007	.4122865	2.660868
_Imarital_2	8946254	.626208	-1.43	0.153	-2.123354	.3341031
_Imarital_3	9166076	.3889825	-2.36	0.019	-1.679859	1533567
_Imarital_4	-1.944692	.7095625	-2.74	0.006	-3.336977	5524077
_Imarital_5	-2.55648	.5380556	-4.75	0.000	-3.612238	-1.500722
educmar1	.6467199	.0727279	8.89	0.000	.504015	.7894247
educmar2	.3172503	.1522423	2.08	0.037	.0185245	.615976
educmar3	.6680745	.1348759	4.95	0.000	.4034246	.9327244
educmar4	.5532015	.2360602	2.34	0.019	.0900105	1.016392
educmar5	.1194529	.2155296	0.55	0.580	3034536	.5423594
sexd	-2.028997	.3066702	-6.62	0.000	-2.630737	-1.427257
mapres80	.0292701	.0118022	2.48	0.013	.0061121	.0524282
age	.0435388	.0117499	3.71	0.000	.0204835	.0665942
_cons	22.24782	.8245124	26.98	0.000	20.62999	23.86566

It appears that education has a statistically significant effect on age of parenthood in all groups except for the never married.

Example 4: Two continuous variables

Both variables should be mean centered, and then we need to generate a product: . gen educage=educmean*agemean (24 missing values generated)

. reg agekdbi	rn bornd educm	ean sexd ma	pres80 ag	gemean e	ducage	
Source	SS	df	MS		Number of obs	= 1089
+	+				F(6, 1082)	= 41.24
Model	5801.57311	6 966.	928852		Prob > F	= 0.0000
Residual	25371.0899	1082 23.4	483271		R-squared	= 0.1861
	+				Adj R-squared	= 0.1816
Total	31172.663	1088 28.6	513447		Root MSE	= 4.8423
agekdbrn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
bornd	1.679599	.5755567	2.92	0.004	.5502651	2.808932
educmean	.6362385	.0581443	10.94	0.000	.5221503	.7503268
sexd	-2.232587	.3044578	-7.33	0.000	-2.829982	-1.635193
mapres80	.0335181	.0118711	2.82	0.005	.010225	.0568111
agemean	.054804	.0102529	5.35	0.000	.0346862	.0749219
educage	0045353	.0034131	-1.33	0.184	0112324	.0021618
_cons	23.64786	.52946	44.66	0.000	22.60898	24.68675

The interaction term is not significant. But if it were, to interpret it, we would pick one variable that's primary and the other one will serve as the moderator variable. E.g. if education is primary: For agemean=0 (age at its mean, 46 y.o.), the effect of education is educmean coefficient, .6362385 For agemean=20 (age is at mean+20, i.e. 66 y.o.), the effect of education is . di .6362385 + 20*-.0045353 .5455325 For agemean=-20 (age=26 y.o.), the effect of education is . di .6362385 - 20*-.0045353 .7269445

We can do the same thing graphically -- focus on one of the continuous
variables and then graph it at various levels of the other one. E.g., we'll see
how the effect of education varies by age:
. qui adjust bornd sexd mapres80 if e(sample), gen(pred2)
. twoway (line pred2 educ if age==30, sort color(red) legend(label(1 "30 years
old"))) (line pred2 educ if age==40, sort color(blue) legend(label(2 "40 years
old"))) (line pred2 educ if age==50, sort color(green) legend(label(3 "50
years old"))) (line pred2 educ if age==60, sort color(lime) legend(label(4 "60
years old")) ytitle("Respondent's Age When 1st Child Was Born"))

Here we can see that the higher one's age, the later they had their first child, but the effect of education becomes a little bit smaller with age (e.g. with age, the intercept becomes larger but the slope of education becomes smaller).We could have done it other way around - graph how agekdbrn is related to age for educational levels of, say, educ=10, 12, 14, 16, and 20. There is also a user-written command that allows to automatically generate such a graph for three values - mean, mean+sd, mean-sd: . net search sslope

Click on: sslope from http://fmwww.bc.edu/RePEc/bocode/s

. sslope agekdbrn bornd educmean sexd mapres80 agemean educage, i(educmean agemean educage) graph

SS	df	MS		Number of obs $F(6, 1082)$	
5801.57308 25371.0899				Prob > F R-squared Adj R-squared	= 0.0000 = 0.1861
31172.663	1088 28.6	513447		Root MSE	= 4.8423
Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1.679599 .6362385 -2.232587 .0335181 .054804 0045353 23.64786	.5755567 .0581443 .3044578 .0118711 .0102529 .0034131 .52946	2.92 10.94 -7.33 2.82 5.35 -1.33 44.66	0.004 0.000 0.000 0.005 0.000 0.184 0.000	.5502651 .5221503 -2.829982 .010225 .0346862 0112324 22.60897	2.808932 .7503268 -1.635193 .0568111 .0749219 .0021618 24.68674
	5801.57308 25371.0899 31172.663 Coef. 1.679599 .6362385 -2.232587 .0335181 .054804 0045353	5801.57308 6 966. 25371.0899 1082 23.4 31172.663 1088 28.6 Coef. Std. Err. 1.679599 .5755567 .6362385 .0581443 -2.232587 .3044578 .0335181 .0118711 .054804 .0102529 0045353 .0034131	5801.57308 6 966.928846 25371.0899 1082 23.4483271 31172.663 1088 28.6513447 Coef. Std. Err. t 1.679599 .5755567 2.92 .6362385 .0581443 10.94 -2.232587 .3044578 -7.33 .0335181 .0118711 2.82 .054804 .0102529 5.35 0045353 .0034131 -1.33	5801.57308 6 966.928846 25371.0899 1082 23.4483271 31172.663 1088 28.6513447 Coef. Std. Err. t P> t 1.679599 .5755567 2.92 0.004 .6362385 .0581443 10.94 0.000 -2.232587 .3044578 -7.33 0.000 .0335181 .0118711 2.82 0.005 .054804 .0102529 5.35 0.000 0045353 .0034131 -1.33 0.184	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

----- agemean-1sd

Note that this gives us significance tests for the slope estimates at three levels of the moderator variable. If we reverse how we list the two main effect variables in the i() option of this command, we get:

. sslope agekdbrn bornd educmean sexd mapres80 agemean educage, i(agemean educage) graph

Simple	e slope of age	kdbrn on ageme	ean at eo	lucmean	+/- 1sd
educmean	Coef.	Std. Err.	t	P> t	
High Mean Low	.0424724 .054804 .0671357	.0154784 .0102529 .0119546	2.74 5.35 5.62	0.006 0.000 0.000	

r's age when 1st child born ----- agemean+1sd

----- agemean mean

<pre>Finally, let's consider a more complicated case when we have a curvilinear relationship of age with agekdbrn and an interaction between age and education: . gen agemean2=agemean^2 (14 missing values generated) . gen agemean3=agemean^3 (14 missing values generated) . gen educage2=educmean*agemean2 (24 missing values generated) . gen educage3=educmean*agemean3 (24 missing values generated)</pre>						
		mapres80 e	educmean a	agemean a	igemean2 agemea	n3 educage
educage2 educa Source	-	df	MS		Number of obs F(10, 1078)	
Model Residual	7731.43912 23441.2239		3.143912 .7451056		Prob > F R-squared Adj R-squared	= 0.0000 = 0.2480
Total	31172.663	1088 28	.6513447		Root MSE	= 4.6632
agekdbrn	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
bornd	1.278985	.556004	2.30	0.022	.1880122	2.369958
sexd	-2.113086	.2941837		0.000	-2.690323	-1.535848
mapres80	.0355671	.0114369	3.11	0.002	.0131259	.0580082
educmean	.7185734	.0759774	9.46	0.000	.569493	.8676538
agemean	0445573	.0182216	-2.45	0.015	080311	0088036
agemean2	0064784	.0007326	-8.84	0.000	0079158	005041
agemean3	.0002514	.0000327	7.69	0.000	.0001873	.0003155
educage	0001007	.005545	-0.02	0.986	010981	.0107796
educage2	0008988	.0003225	-2.79	0.005	0015315	0002661
educage3	.0000198	9.75e-06	2.03	0.042	6.87e-07	.000039
_cons	24.53094	.5244201	46.78	0.000	23.50194	25.55994

Indeed, significant interactions with the squared term and the cubed term. . qui adjust bornd sexd mapres80 if e(sample), gen(pred3)

. twoway (line pred3 age if educ==12, sort color(red) legend(label(1 "12 years of education"))) (line pred3 age if educ==14, sort color(blue) legend(label(2 "14 years of education"))) (line pred3 age if educ==16, sort color(green) legend(label(3 "16 years of education"))) (line pred3 age if educ==20, sort color(lime) legend(label(4 "20 years of education")) ytitle("Respondent's Age When 1st Child Was Born"))

6. Heteroscedasticity

The problem of heteroscedasticity commonly refers to non-constant error variance (that's opposite of homoscedasticity). We can examine this graphically as well as using formal tests. First, let's see if error variance changes across fitted values of our dependent variable:

. qui reg agekdbrn educ born sex mapres80 age . rvfplot

Can examine the same using a formal test: . hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of agekdbrn

chi2(1) = 21.44 Prob > chi2 = 0.0000

*Since p<.05, we reject the null hypothesis of constant variance - the errors are heteroscedastic

*Both the graph and the test indicate that the error variance is nonconsant (note the megaphone pattern).

Now let's search if there is any systematic relationship between error variance and individual regressors. First, graphical examination: . rvpplot educ

.rvpplot age

* Can see heteroscedasticity in both graphs, but it is much more severe for age For a dummy variable, it is more difficult to examine it graphically. E.g. : . rvpplot sex

*Now, let's use a formal test to examine patterns of error variance across individual regressors:

. hettest, rhs mtest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance

Variable	chi2	df	р
+			
educ	5.87	1	0.0154 #
born	0.00	1	0.9810 #
sex	9.19	1	0.0024 #
mapres80	1.45	1	0.2279 #
age	10.26	1	0.0014 #
+			
simultaneous	25.78	5	0.0001
	11		

unadjusted p-values

*Looks like a number of regressors are responsible for our problems.

Remedies:

1. Transformations might help - it is especially important to consider the distribution of the dependent variable. As we discussed above, it is typically desirable, and can help avoid heteroscedasticity as well as non-normality problems, if the dependent variable is normally distributed. Let's examine whether the transformation we identified - reciprocal square root - would solve our heteroscedasticity problem.

. gen agekdbrnrr=1/(sqrt(agekdbrn))
(810 missing values generated)

. reg agekdbi	nrr educ born	sex mapres	s80 age			
Source	SS	df	MS		Number of obs	= 1089
Model Residual	. 11381105 . 426934693	1082 .000	3968508 394579		F(6, 1082) Prob > F R-squared Adj R-squared	
Total	.540745743	1088 .000)497009		Root MSE	= .01986
agekdbrnrr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ born sex mapres80	0024213 0070982 .0095887 0001494 0003115	.0002353 .0023638 .0012506 .0000487 .0000434	-10.29 -3.00 7.67 -3.07 -7.18	0.000 0.003 0.000 0.002 0.000	0028829 0117363 .0071349 000245 0003967	0019597 0024602 .0120425 0000539 0002264
agemean agemean2 _cons	8.86e-06 .2373519	2.29e-06 .0046505	-7.18 3.87 51.04	0.000	4.37e-06 .228227	0002284 .0000134 .2464769

. hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of agekdbrnrr

chi2(1)	=	0.35
Prob > chi2	=	0.5566
the set of a set of the set		

. hettest, rhs mtest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance

Variable	chi2	df	р
educ born sex mapres80 age	0.63 0.26 0.29 0.73 1.71	1 1 1 1	0.4262 # 0.6111 # 0.5932 # 0.3939 # 0.1911 #
simultaneous	3.06	5	0.6900
		_	_

unadjusted p-values

*The heteroscedasticity problem has been solved. As I mentioned earlier, however, it is important to check that we did not introduce any nonlinearities

by this transformation, and overall, transformations should be used sparsely always consider ease of model interpretation as well. Also, sometimes when searching for a transformation to remedy heteroscedasticity, Box-Cox transformations can be very helpful, including the "transform both sides" (TBS) approach (see boxcox command).

2. Sometimes, dealing with outliers, influential observations, and nonlinearities might also help resolve heteroscedasticity problems. That is why I recommend testing with heteroscedasticity only after you've dealt with other problem.

3. Heteroscedasticity can also be a sign that some important factor is omitted, so you might want to rethink your model specification.

4. If nothing else works, we can obtain robust variance estimates using robust option in regress command (note that this is different from robust regression estimated by rreg!). These variance estimates do not rely on distributional assumptions and are therefore not sensitive to heteroscedasticity:

. reg agekdbrn educ born sex mapres80 age, robust

Linear regress	sion				Number of obs F(5, 1083) Prob > F R-squared Root MSE	$= 1089 \\ = 47.74 \\ = 0.0000 \\ = 0.1848 \\ = 4.8441$
agekdbrn	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
educ	.6158833	.0640298	9.62	0.000	.4902467	.7415199
born sex	1.679078 -2.217823	.5756992 .3143631	2.92 -7.05	$0.004 \\ 0.000$.5494661 -2.834653	2.80869 -1.600993
mapres80	.0331945	.0122934	2.70	0.007	.009073	.0573161
age	.0582643	.0088246	6.60	0.000	.0409491	.0755795
_cons	13.27142	1.239779	10.70	0.000	10.83877	15.70406

OLS article example:

Kenworthy, Lane, and Melissa Malami. 1999. "Gender Inequality in Political Representation: A Worldwide Comparative Analysis." Social Forces, 78: 235-268.

Questions to answer about the article:

- 1. What are the dependent and the independent variables in this analysis?
- 2. What type of variables are these (continuous, categorical, dichotomous)?
- 3. Have the authors applied transformations to any of the variables?

4. Which diagnostics did the authors report conducting and what were the results?

5. What diagnostics and potential problems did the authors not address? 6. How did the authors handle the missing data?

7. How did the authors choose to present their results? What else could they have been presented?