SC704: Topics in Multivariate Analysis Instructor: Natasha Sarkisian Count Data Models

Negative Binomial Model

Using Poisson, we attempted to account for some sources of heterogeneity - but the model doesn't fit very well. Maybe we didn't take into account all sources of heterogeneity - could try additional variables. That's important to explore, but rarely helps. In practice, Poisson regression models rarely fits due to overdispersion.

There is another process that often creates overdispersion - it is known as contagion - violation of the assumption of the independence of events. This assumption is often unrealistic; e.g. if you have your first child, that increases your chances of having your second.

To better model overdispersion from this and other sources, we can use negative binomial model. It allows taking into account unobserved heterogeneity. To do so, it introduces an additional parameter - alpha, known as the dispersion parameter. Increasing alpha increases conditional variance of X. If alpha is zero, the model becomes regular Poisson model. Here's a comparison of Poisson and negative binomial distributions with different variances for mean count=1 and mean count=10:

Panel A: $E(y)=1$

Panel B: $E(y)=10$

Figure 8.6. Comparisons of the Negative Binomial and Poisson Distributions

And here's an example of regression curves for negative binomial models:
Panel A: NBRM with $\alpha=0.5$

Panel B: NBRM with $\alpha=1.0$

Figure 8.7. Distribution of Counts for the Negative Binomial Regression Model
Now let's run NB model for our data:
. nbreg childs sex married sibs born educ Negative binomial regression

Log likelihood = -4711.6789

Number of obs	$=$	2745
LR chi2 (5)	$=$	380.47
Prob > chi2	$=$	0.0000
Pseudo R2	$=$	0.0388

childs	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]	
sex	. 2086278	. 0346569	6.02	0.000	. 1407014	. 2765542
married	. 471206	. 034682	13.59	0.000	. 4032305	. 5391816
sibs	. 0397041	. 0054244	7.32	0.000	. 0290725	. 0503358
born	-. 2231164	. 0616061	-3.62	0.000	-. 3438622	-. 1023706
educ	-. 0616831	. 0058316	-10.58	0.000	-. 0731129	-. 0502534
_cons	. 9198597	. 1211683	7.59	0.000	. 6823743	1.157345
/lnalpha	-1.523939	. 1086487			-1.736886	-1.310991
alpha	. 2178522	. 0236694			. 1760678	. 2695528

Likelihood-ratio test of alpha=0: chibar2(01) = 145.66 Prob>=chibar2 $=0.000$

Interpretation of the results for negative binomial model is exactly the same as for Poisson model. But we have an extra line of output to interpret - the likelihood-ratio test. This allows us to see whether NB model should be used in place of regular Poisson. If probability is below the cutoff, it means that there is overdispersion (Alpha is not zero) and we should be using NB model rather than Poisson.

Now let's compare their performance graphically:
. prcounts nb, plot max(8)
(19 missing values generated)
. lab var nbpreq "Negative binomial model"
. gr twoway connected poisobeq poispreq prmpreq expopreq nbpreq poisval, ylabel(0 (.1) .3) ytitle("Probability of Count")

The graph confirms the results of the test: NB model does better than regular multivariate Poisson. But it still underpredicts zeros and overpredicts ones. Unfortunately, the goodness of fit tests that are available after Poisson are not available after negative binomial. But the significance test for alpha tells us if Poisson performs better than negative binomial.

The interpretation tools for nbreg are the same as for poisson; we can get IRR and use prtab, prgen, prchange, and prvalue commands, as well as mfx command. We could also estimate this model with exposure.

As for diagnostics, everything is similar to Poisson, except for boxtid which doesn't work with nbreg. To obtain a GLM negative binomial model that's identical to the one estimated to nbreg, you need to specify the exact alpha to use - otherwise it uses the default value of 1 and the results differ. So here we use:
. glm childs sex married sibs born educ, family(nb .2178552)

Generalized linear models	No. of obs	$=$	2745
Optimization	ML	Residual df	$=$
		Scale parameter $=$	1
Deviance	$=3284.463783$	$(1 / d f)$ Deviance $=$	1.199147

Pearson	$=2908.984543$	$(1 / d f)$ Pearson $=1.062061$	
Variance function: $V(u)=u+(.2178552) u \wedge 2$			
Link function	$: g(u)=\ln (u)$	$[\log$. Binomial]	
		AIC	$=3.437289$
Log likelihood $=-4711.678905$	BIC	$=-18401.67$	

	OIM				[95\% Conf. Interval]	
childs	Coef.	Std. Err.	Z	$P>\|z\|$		
sex	. 2086279	. 0346384	6.02	0.000	. 1407379	. 2765179
married	. 4712062	. 0346364	13.60	0.000	. 4033201	. 5390924
sibs	. 0397041	. 0054238	7.32	0.000	. 0290737	. 0503346
born	-. 2231165	. 0616059	-3.62	0.000	-. 3438618	-. 1023712
educ	-. 0616831	. 0058316	-10.58	0.000	-. 0731129	-. 0502533
_cons	. 9198593	. 1211388	7.59	0.000	. 6824317	1.157287

We can obtain residuals etc. after this.

In addition to regular nbreg where overdispersion is assumed to be constant, we can also use generalized negative binomial regression to model overdispersion: . gnbreg childs sex married sibs born educ, lnalpha(sex married sibs born educ)
Generalized negative binomial regression Number of obs = 2745
LR chi2 (5) $=222.46$

Prob > chi2 $=0.0000$
Log likelihood $=-4587.1261 \quad$ Pseudo R2 $=\quad 0.0237$

	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
childs						
sex	. 079685	. 0354711	2.25	0.025	. 0101628	. 1492071
married	. 3413691	. 0387924	8.80	0.000	. 2653374	. 4174008
sibs	. 0369471	. 0047258	7.82	0.000	. 0276847	. 0462095
born	-. 1967968	. 0582151	-3.38	0.001	-. 3108963	-. 0826973
educ	-. 0514978	. 0056236	-9.16	0.000	-. 0625199	-. 0404758
_cons	1.085011	. 1189463	9.12	0.000	. 8518807	1.318142
lnalpha						
sex	-1.557369	. 1884906	-8.26	0.000	-1.926804	-1.187934
married	-4.256861	. 819715	-5.19	0.000	-5.863473	-2.650249
sibs	-. 1051836	. 0405024	-2.60	0.009	- . 1845669	-. 0258003
born	. 1353893	. 3910783	0.35	0.729	-. 63111	. 9018887
educ	. 1619184	. 0358938	4.51	0.000	. 0915678	. 232269
_cons	. 3279141	. 7155448	0.46	0.647	-1.074528	1.730356

Looks like overdispersion parameter varies by sex, marital status, number of siblings, and education, so the contagion process operates differently for different people.

Zero-Inflated Count Data Models

The problem that our negative binomial model still has - underpredicting zeros, overpredicting ones -- is very common and sometimes this problem can be very severe when there are a lot of zeros in the distribution. Example - Sarkisian and Gerstel 2004 article. We can use zero-inflated count models to correct for that - they model two different processes. They assume two latent groups - one is capable of having positive counts, the other one is not - it will always have zero count. For example, some are capable of having children, and the number that they can have might vary, but others cannot have children and their count will always remain zero. But these two groups are latent - no information on actual fertility situation. We can also have zeros in the first group. We can distinguish structural zeros (this behavior is not in this person's repertoire at all) vs chance zeros (this behavior is in this person's repertoire, but did not occur during the specified period). E.g.: "How many times last week did you smoke marijuana?" Some zeros mean the person never smokes it; other zeros mean the person does smoke but did not smoke last week.

Therefore, this model is a two-step process - first, have to predict the membership in two groups - "always zero" and "not always zero" and second, predict the count in the "not always zero" group.
. zip childs sex married sibs born educ, inflate(sex married sibs born educ)

Note the inflate option we specified - we have to specify that option, it tells Stata what variables to use to predict the membership in "Always Zero" group. In this case, we used the same variables but we could have used a smaller subset of the variables or even different variables altogether. We'll return to interpreting this output. But let's prepare to graphically examine the fit:
. prcounts zip, plot max(8)
(19 missing values generated)
. lab var zippreq "ZIP"

Both ZIP and ZINB approximate the observed distribution much better than regular Poisson and NB models. We could also plot deviations from observed counts rather than actual counts and get comparisons of fit:
. countfit childs sex married sibs born educ, inflate(sex married sibs born educ)

Variable \|	PRM	NBRM	ZIP	ZINB	
childs					
respondents sex	1.216	1.232	1.001	1.006	
	6.73	6.02	0.05	0.18	
R is married	1.566	1.602	1.031	1.035	
	15.54	13.59	0.92	1.01	
number of brothers and sisters	1.039	1.041	1.030	1.030	
	9.14	7.32	6.41	6.26	
was r born in this country \|	0.802	0.800	0.841	0.841	
	-4.23	-3.62	-3.07	-3.02	
highest year of school completed	0.940	0.940	0.962	0.962	
	-12.81	-10.58	-7.24	-7.09	
Constant	2.598	2.509	3.908	3.847	
	9.45	7.59	12.46	11.97	
lnalpha ${ }^{\text {a }}$ Constant 024					
		-14.03		-5.64	
inflate					
respondents sex			0.282	0.275	
			-8.88	-8.79	
R is married			0.021	0.012	
			-5.75	-3.62	
number of brothers and sisters			0.913	0.913	
			-3.19	-3.09	
was r born in this country \|			1.375	1.407	
			1.16	1.21	
highest year of school completed			1.182	1.187	
			6.24	6.19	
Constant			0.402	0.371	
			-1.76	-1.85	
Statistics					
alpha \|		0.218			
N \|	2745	2745	2745	2745	
11 \|	-4784.508	-4711.679	-4524.192	-4522.910	
bic	9616.521	9478.781	9143.394	9148.749	
aic \|	9581.016	9437.358	9072.383	9071.821	
				legend: b/t	
Comparison of Mean Observed and Predicted Count					
Maximum At	Mean				
Model Difference Value	\|Diff				
PRM -0.122 1	0.028				
NBRM -0.109 1	0.027				
ZIP 0.030	0.012				
ZINB 0.032	0.013				
PRM: Predicted and actual probabilities					
Count Actual Predicted	\|Diff		arson		

0	0.289	0.192	0.097	135.055
1	0.170	0.292	0.122	139.312
2	0.238	0.242	0.005	0.231
3	0.174	0.147	0.027	13.674
4	0.067	0.073	0.006	1.361
5	0.026	0.032	0.006	3.069
6	0.015	0.013	0.002	0.526
7	0.008	0.005	0.003	5.097
8	0.012	0.002	0.011	163.156
9	0.000	0.001	0.001	1.924
Sum	1.000	1.000	0.278	463.405

NBRM: Predicted and actual probabilities

Count	Actual	Predicted	Diff\|	Pearson
0	0.289	0.242	0.047	24.952
1	0.170	0.279	0.109	116.103
2	0.238	0.206	0.032	13.512
3	0.174	0.126	0.048	50.004
4	0.067	0.070	0.003	0.315
5	0.026	0.037	0.011	8.820
6	0.015	0.019	0.005	3.010
7	0.008	0.010	0.002	0.867
8	0.012	0.005	0.007	30.214
9	0.000	0.003	0.003	7.016
Sum	1.000	0.997	0.265	254.813

ZIP: Predicted and actual probabilities Count Actual Predicted |Diff| Pearson

0	0.289	0.288	0.001	0.014
1	0.170	0.191	0.021	6.403
2	0.238	0.208	0.030	11.561
3	0.174	0.155	0.019	6.512
4	0.067	0.089	0.021	14.210
5	0.026	0.042	0.016	16.286
6	0.015	0.017	0.003	1.083
7	0.008	0.006	0.002	1.298
8	0.012	0.002	0.010	135.546
9	0.000	0.001	0.001	1.886
Sum	1.000	1.000	0.124	194.798

| Count | Actual | Predicted | \|Diff| | Pearson |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0.289 | 0.289 | 0.000 | 0.001 |
| 1 | 0.170 | 0.196 | 0.026 | 9.202 |
| 2 | 0.238 | 0.206 | 0.032 | 13.730 |
| 3 | 0.174 | 0.151 | 0.023 | 9.695 |
| 4 | 0.067 | 0.087 | 0.020 | 12.320 |
| 5 | 0.026 | 0.042 | 0.016 | 16.787 |
| 6 | 0.015 | 0.018 | 0.003 | 1.855 |
| 7 | 0.008 | 0.007 | 0.001 | 0.389 |
| 8 | 0.012 | 0.003 | 0.010 | 104.052 |

So now let's interpret this final model:
. zip childs sex married sibs born educ, inflate(sex married sibs born educ)

Zero-inflated poisson regression

Inflation model = logit
Log likelihood $=-4524.192$

Number of obs	$=$	2745
Nonzero obs	$=$	1951
Zero obs	$=$	794
LR chi2 (5)	$=$	130.65
Prob > chi2	$=$	0.0000

childs	Coef.	Std. Err.	Z	$P>\|z\|$	[95\% Conf. Interval]	
childs						
sex	. 0014908	. 0320997	0.05	0.963	-. 0614234	. 064405
married	. 0307475	. 0333411	0.92	0.356	-. 0345999	. 0960949
sibs	. 0292838	. 0045691	6.41	0.000	. 0203286	. 038239
born	-. 1728303	. 0563097	-3.07	0.002	- . 2831953	-. 0624654
educ	-. 0382489	. 0052824	-7.24	0.000	-. 0486021	-. 0278956
_cons	1.363043	. 1094042	12.46	0.000	1.148615	1.577472
inflate						
sex	-1.267402	. 1427508	-8.88	0.000	-1.547189	-. 987616
married	-3.867796	. 6722317	-5.75	0.000	-5.185346	-2.550246
sibs	-. 0907598	. 0284525	-3.19	0.001	-. 1465256	-. 034994
born	. 3182067	. 2733966	1.16	0.244	- . 2176408	. 8540542
educ	. 1671403	. 0267744	6.24	0.000	. 1146635	. 2196171
_cons	-. 9103566	. 5168716	-1.76	0.078	-1.923406	. 102693

The first set of coefficients is from the equation predicting counts for the "Not Always Zero" group. These show that number of siblings increases number of children and being foreign born and having more education decreases it. These coefficients can be interpreted the same way as regular Poisson coefficients.

The second set of coefficients is from the equation that predicts membership in "Always Zero" group. These can be interpreted as logit coefficients. Note that they predict zeros - so their sign will usually be the opposite to that of the coefficients in the upper half of the output. These show that women are less likely than men to be in "Always zero" group, married are less likely than single people to be in it, those with more siblings are also likely to be in it, and those with more education are more likely to be in "Always zero" group.

To be able to interpret the size of these effects, let's use listcoef:
. listcoef
zip ($\mathrm{N}=2745$): Factor Change in Expected Count
Observed SD: 1.6887584
Count Equation: Factor Change in Expected Count for Those Not Always 0

childs	b	Z	$\mathrm{P}>\|\mathrm{z}\|$	$e^{\wedge} \mathrm{b}$	$\mathrm{e}^{\wedge} \mathrm{bStdX}$	SDofX
sex	0.00149	0.046	0.963	1.0015	1.0007	0.4970
married	0.03075	0.922	0.356	1.0312	1.0154	0.4985
sibs	0.02928	6.409	0.000	1.0297	1.0919	3.0008
born	-0.17283	-3.069	0.002	0.8413	0.9512	0.2893
educ	-0.03825	-7.241	0.000	0.9625	0.8925	2.9741

Binary Equation: Factor Change in Odds of Always 0

Always0	b	Z	$P>\|z\|$	$e^{\wedge} b$	$e^{\wedge} \mathrm{bStdX}$	SDofx
sex	-1.26740	-8.878	0.000	0.2816	0.5326	0.4970
married	-3.86780	-5.754	0.000	0.0209	0.1454	0.4985
sibs	-0.09076	-3.190	0.001	0.9132	0.7616	3.0008
born	0.31821	1.164	0.244	1.3747	1.0964	0.2893
educ	0.16714	6.243	0.000	1.1819	1.6439	2.9741

Or better yet with percentages:
. listcoef, percent
zip (N=2745): Percentage Change in Expected Count Observed SD: 1.6887584
Count Equation: Percentage Change in Expected Count for Those Not Always 0

childs	b	Z	$\mathrm{P}>\|\mathrm{z}\|$	\%	\%StdX	SDofx
sex	0.00149	0.046	0.963	0.1	0.1	0.4970
married	0.03075	0.922	0.356	3.1	1.5	0.4985
sibs	0.02928	6.409	0.000	3.0	9.2	3.0008
born	-0.17283	-3.069	0.002	-15.9	-4.9	0.2893
educ	-0.03825	-7.241	0.000	-3.8	-10.8	2.9741

Binary Equation: Factor Change in Odds of Always 0

Always0	b	Z	$P>\|z\|$	\%	\%StdX	SDofx
sex	-1.26740	-8.878	0.000	-71.8	-46.7	0.4970
married	-3.86780	-5.754	0.000	-97.9	-85.5	0.4985
sibs	-0.09076	-3.190	0.001	-8.7	-23.8	3.0008
born	0.31821	1.164	0.244	37.5	9.6	0.2893
educ	0.16714	6.243	0.000	18.2	64.4	2.9741

Each additional sibling increases one's count by 3%, each year of education decreases it by 3.8%, and being foreign born decreases it by 16\%. At the same time, women's odds of having no kids (being in always zero group) are 71.8% lower than men's, and the odds for married to be in always zero group are 97.9% lower than for single people. Further, each additional sibling decreases one's odds of not having kids by 8.7% and each additional year of education increases those odds by 18.2%.

Further, as for regular Poisson we can interpret predicted rates and predicted probabilities. Predicted rates for native-born:
. prtab sex married, x(born=1)
zip: Predicted rates for childs

responden ts sex	married	
male	1.0721	2.2151
female	1.6977	2.2531

base x values for count equation:

| | sex | married | sibs | born |
| ---: | ---: | ---: | ---: | ---: | educ

Note that we could have separately specified the values of independent variables for the two equations - we would only used that if we used different variables in the two equations.

For foreign-born:
. prtab sex married, x(born=2)
zip: Predicted rates for childs

responden | married
ts sex | $\quad 0 \quad 1$
male | 0.75691 .8487
female | 1.31591 .8912
base x values for count equation:

| x $=$ | 1.5555556 | .45974499 | 3.6018215 | sibs | born |
| :--- | ---: | ---: | ---: | ---: | ---: | educ

base z values for binary equation:

	sex	married	sibs	born	educ
z	1.5555556	.45974499	3.6018215	2	13.358834

We can also examine changes in predicted rates as well as marginal effects. . prchange
zip: Changes in Predicted Rate for childs

	min $->\max$	$0->1$	$-+1 / 2$	-+ sd $/ 2$
sex	0.2339	0.5252	0.2212	0.1072
married	0.7951	0.7951	0.8680	0.3761
sibs	2.4221	0.0697	0.0740	0.2221
born	-0.3756	-0.4412	-0.4010	-0.1159
educ	-2.2847	-0.1419	-0.1047	-0.3117

```
exp(xb): 2.0117
```

base x values for count equation:
sex married sibs born educ
$x=1.55556 \quad .459745 \quad 3.60182 \quad 1.09217 \quad 13.3588$
$\operatorname{sd}(x)=\begin{array}{llllll}.496995 & .498468 & 3.00084 & .289315 & 2.97411\end{array}$
base z values for binary equation:

	sex	married	sibs	born	educ
$z=$	1.55556	.459745	3.60182	1.09217	13.3588
$s d(z)=$.496995	.498468	3.00084	.289315	2.97411

We interpret these results the same way as for regular Poisson model. Note that here prchange does not compute marginal effects. But we can obtain them using mfx compute (this calculation will take a long time - takes a while to calculate standard errors).
. mfx compute
Marginal effects after zip
$y=$ predicted number of events (predict)
$=2.0116755$

variable	dy/dx	Std. Err.	z	$P>\|z\|$	95\%	C.I.	X
sex	. 2137696	. 07513	2.85	0.004	. 066517	. 361022	1.55556
married*	. 7950725	. 06097	13.04	0.000	. 675569	. 914576	. 459745
sibs	. 074003	. 0096	7.71	0.000	. 055192	. 092814	3.60182

$$
\begin{array}{l|lllllll}
\text { born } & -.4005967 & .11142 & -3.60 & 0.000 & -.618976 & -.182218 & 1.09217 \\
\text { educ } & -.1047399 & .01113 & -9.41 & 0.000 & -.126553 & -.082927 & 13.3588
\end{array}
$$

(*) dy/dx is for discrete change of dummy variable from 0 to 1
Note that all marginal effects are significant - this is because some of the variables had significant coefficients in the count model, and others in "Always zero" model, and marginal effects combined the two to calculate the overall impact of each variable on the expected count. It is evaluated at the mean of each variable with other variables also held at their means; for dummy variables it is evaluated as discrete change in the predicted rate. Unfortunately, because our sex and born variables are not 0-1 variables, mfx compute does not realize they are dummy variables. Therefore, always try to code all dummies as 0-1. An example of using marginal effects can be found in Sarkisian and Gerstel 2004.

We can also examine predicted probabilities using prvalue and prgen. The only difference in using these is that now we will get two probabilities for zero: One is the total probability - either because one is in "Always Zero" group or because they just didn't have their first kid yet. The other one is
probability of being in "Always zero" group only. Let's examine these:

- prvalue, \times (married=0 sex=1 born=1)
zip: Predictions for childs
Predicted rate: 1.07
Predicted probabilities:

$\operatorname{Pr}(y=0 \mid x, z):$	0.6788	$\operatorname{Pr}(y=1 \mid x):$	0.1792
$\operatorname{Pr}(y=2 \mid x):$	0.0961	$\operatorname{Pr}(y=3 \mid x):$	0.0343
$\operatorname{Pr}(y=4 \mid x):$	0.0092	$\operatorname{Pr}(y=5 \mid x):$	0.0020
$\operatorname{Pr}(y=6 \mid x):$	0.0004	$\operatorname{Pr}(y=7 \mid x):$	0.0001
$\operatorname{Pr}(y=8 \mid x):$	0.0000	$\operatorname{Pr}(y=9 \mid x):$	0.0000

$\operatorname{Pr}(A l w a y s 0 \mid z): 0.5116$
x values for count equation

	sex	married	sibs	born	educ

z values for binary equation

	sex	married	sibs	born	educ

These were predicted probabilities (and the predicted rate!) for average single native-born men. We can see that according to our model 68% of these men don't have kids and most of these men are in always zero group - the probability of being in that group is .51. So the remaining 17% we assume just didn't start having children yet. No let's look at married men:
. prvalue, x (married=1 sex=1 born=1)
zip: Predictions for childs
Predicted rate: 2.22
Predicted probabilities:
$\operatorname{Pr}(y=0 \mid x, z): 0.1282 \operatorname{Pr}(y=1 \mid x): 0.2366$
$\operatorname{Pr}(\mathrm{y}=2 \mid \mathrm{x}): \quad 0.2620 \quad \operatorname{Pr}(\mathrm{y}=3 \mid \mathrm{x}): 0.1935$
$\operatorname{Pr}(\mathrm{y}=4 \mid \mathrm{x}): \quad 0.1071 \operatorname{Pr}(\mathrm{y}=5 \mid \mathrm{x}): 0.0475$
$\operatorname{Pr}(\mathrm{y}=6 \mid \mathrm{x}): 0.0175 \quad \operatorname{Pr}(\mathrm{y}=7 \mid \mathrm{x}): 0.0055$
$\operatorname{Pr}(y=8 \mid x): 0.0015 \quad \operatorname{Pr}(y=9 \mid x): 0.0004$
Pr(Always0|z): 0.0214
x values for count equation

	sex	married	sibs	born	educ

z values for binary equation

	sex	married	sibs	born	educ

Only 13% of these men are expected to have no kids, and only 2% of them are in always zero group - the remaining 11% just didn't start having kids yet. We can do a similar analysis for women - let's put their results next to each other:

According to our model, 36% of single women don't have kids and 23% never will, while only 11% of married women don't have kids and only 0.6% never will.

We can also use prgen to make graphs like we did for Poisson model - but here again we will have two sets of probabilities for zero counts -total probability of zero and probability of "Always zero." E.g., see Long and Freese p. 282.

We can also adjust our final, best-fitting model to exposure time:
. zip childs sex married sibs born educ, inflate(sex married sibs born educ) exposure(reprage)
(31 missing values generated)

sex	. 0673734	. 0319959	2.11	0.035	. 0046625	. 1300842
married	. 0372361	. 0329312	1.13	0.258	-. 0273079	. 10178
sibs	. 0213414	. 004529	4.71	0.000	. 0124647	. 0302181
born	-. 099738	. 0548672	-1.82	0.069	-. 2072757	. 0077996
educ	-. 04122	. 0051174	-8.05	0.000	-. 0512498	-. 0311901
cons	-1.996286	. 1081046	-18.47	0.000	-2.208167	-1.784405
reprage	(exposure)					
inflate						
sex	-1.258563	. 1789565	-7.03	0.000	-1.609311	-. 9078144
married	-7.69451	37.75966	-0.20	0.839	-81.70207	66.31305
sibs	-. 0533748	. 0340675	-1.57	0.117	-. 1201459	. 0133964
born	. 3318979	. 3383992	0.98	0.327	-. 3313523	. 9951481
educ	. 1963433	. 0342241	5.74	0.000	. 1292652	. 2634213
_cons	-1.914812	. 6732486	-2.84	0.004	-3.234355	-. 5952693

Note that the model changed - marriage that seemed so important is no longer significant! Looks like that was just function of age. Sex, siblings, and education predict the count, and sex and education predict the membership in always zero group.

Let's use fitstat to see whether this model with exposure performs better than the model without:
. quietly fitstat, save
. quietly zip childs sex married sibs born educ if reprage~=., inflate(sex married sibs born educ)
Note: Here we limit the model without exposure only to those who don't miss data on reprage variable.
. fitstat, dif
Measures of Fit for zip of childs

	Current	Saved	Difference
Model:	zip	zip	
N:	2734	2734	0
Log-Lik Intercept Only	-4825.719	-4825.719	0.000
Log-Lik Full Model	-4509.577	-4334.455	-175.121
D	$9019.153(2722)$	$8668.911(2722)$	$350.243(0)$
LR	$632.285(10)$	$982.528(10)$	$350.243(0)$
Prob > LR	0.000	0.000	
McFadden's R2	0.066	0.102	-0.036
McFadden's Adj R2	0.063	0.099	-0.036
ML (Cox-Snell) R2	0.206	0.302	-0.095
Cragg-Uhler(Nagelkerke)	R2	0.213	0.311
AIC	3.308	3.180	-0.098
AIC*n	9043.153	8692.911	0.128
BIC	-12521.451	-12871.693	350.243
BIC'	-553.150	-903.393	350.243
BIC used by Stata	9114.116	8763.873	350.243
AIC used by Stata	9043.153	8692.911	350.243

Difference of 350.243 in BIC' provides very strong support for saved model. Note: p-value for difference in LR is only valid if models are nested.

We can see very strong support for the model with exposure.
The issue of diagnostics for zero-inflated models:
Unfortunately, many tests and work-around solutions that worked for nbreg and poisson don't work for zip and zinb. One big problem is that zip and zinb cannot be modeled using GLM. We can still test for multicollinearity and use
robust option, but linearity diagnostics and those used to identify outliers and leverage points are not available here. One could test for those using regular poisson or nbreg and then see if suggested fixes (e.g., a transformation or omitted leverage points) appear to improve the corresponding zero-inflated model.

Zero-truncated models
Sometimes we have count data that have no zeros at all, because we only start accumulating data once at least one count was observed. For example, the length of hospital stay cannot be 0 because we only start observing counts once a person is admitted. In such cases, zero-truncated models, implemented by ztp and ztnb commands, are useful. E.g. say we only have data on the number of children after the person has their first one:
. gen childs0=childs
(5 missing values generated)
. replace childs0=. if childs==0
(799 real changes made, 799 to missing)
. ztp childs0 sex married sibs born educ
Zero-truncated Poisson regression

Log likelihood = -3129.8812

Number of obs	$=$	1951
LR chi2 (5)	$=$	168.39
Prob > chi2	$=$	0.0000
Pseudo R2	$=$	0.0262

childs0	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf. Interval]	
sex	. 0050533	. 0341538	0.15	0.882	-. 061887	. 0719936
married	. 0439347	. 0344268	1.28	0.202	-. 0235405	. 11141
sibs	. 0283134	. 0047432	5.97	0.000	. 019017	. 0376098
born	-. 1934924	. 0631899	-3.06	0.002	-. 3173423	-. 0696426
educ	-. 0403873	. 0055964	-7.22	0.000	-. 0513561	-. 0294186
_cons	1.406071	. 1183233	11.88	0.000	1.174161	1.63798

Likelihood-ratio test of alpha=0: chibar2(01) = 1.93 Prob>=chibar2 $=0.082$
Note that the results of these models look very similar to those from the count equations of zero-inflated Poisson and NB models.

Examples of count data models:
Van der Burg, Brigitte, Jacques Siegers, and Rudolf Winter-Ebmer. 1998. Gender and Promotion in the Academic Labour Market. Labour, 12: 701713.

Questions to answer about the article:

1. What are the dependent and the independent variables in this analysis?
2. What is reported in Table 1? How can we interpret these results? How do the authors discuss these results in the text?
3. What is presented in Table 2? How can we interpret these results?
4. In addition to what the authors chose to present, how else could they have presented their results?
5. What measures of model fit and model diagnostics are presented? What diagnostics and potential problems did the authors not address?

Sarkisian, Natalia and Naomi Gerstel. 2004. "Explaining the Gender Gap in Help to Parents: The Importance of Employment." Journal of Marriage and the Family, 66: 431-451.

Questions to answer about the article:

1. What are the dependent and the independent variables in this analysis?
2. What is reported in Table 1? How can we interpret these results? How do the authors discuss these results in the text?
3. In addition to what the authors chose to present, how else could they have presented their results?
4. What measures of model fit and model diagnostics are presented? What diagnostics and potential problems did the authors not address?
