Sociology 704: Topics in Multivariate Statistics
Instructor: Natasha Sarkisian

Binary Logit

Binary models deal with binary (0/1, yes/no) dependent variables. OLS is
inappropriate for this kind of dependent variable because we would violate
numerous OLS assumptions (e.g., that the dependent variable is gquantitative,
continuous, and unbounded, or that the error terms should be homoscedastic and
normally distributed).

Two main types of binary regression models are used most often — logit and
probit. The two types differ in terms of the assumed variance of the error
term, but in practice their results are usually very similar, and the choice
between the two is mainly the matter of taste and discipline conventions. We’ll
mostly focus on logit models.

Binary logit and probit models as well as other models we’ll discuss this
semester are estimated using Maximum Likelihood estimation techniques —
numerical, iterative techniques that search for a set of parameters with the
highest level of the likelihood function (likelihood function tells us how
likely it is that we would observe the data in hand for each set of parameters,
and in fact what we maximize is the log of this likelihood function). This
process is a trial and error process. Logit or probit output includes
information on iterations — those iterations are the steps in that search
process. Sometimes, with complicated models, the computer cannot find that
maximum — then we get convergence problems. But this never happens with binary
logit or probit models.

To run logit or probit models in Stata, the dependent variable has to be coded
0/1 -- it cannot be 1 and 2, or anything else. Let’s generate a 0/1 variable:
. codebook grass
grass
should marijuana be made legal

type: numeric (byte)

label: grass

range: [1,2] units: 1
unique values: 2 missing .: 1914/2765
tabulation: Freq. Numeric Label
306 1 legal
545 2 not legal
1914 .

- gen marijuana=(grass==1) if grass-=.
(1914 missing values generated)
. tab marijuana, miss

marijuana | Freqg. Percent Cum.

0| 545 19.71 19.71

1] 306 11.07 30.78

- 1,914 69.22 100.00

____________ e e
Total | 2,765 100.00



. xi: logit marijuana sex educ age childs

Iteration O: log likelihood = -552.0232
Iteration 1: log likelihood = -525.24385
Iteration 2: log likelihood = -524.84887
Iteration 3: log likelihood = -524.84843
Logistic regression Number of obs = 845
LR chi2(4) = 54 .35
Prob > chi2 = 0.0000
Log likelihood = -524.84843 Pseudo R2 = 0.0492
marijuana | Coef. Std. Err. z P>|z] [95% Conf. Interval]
_____________ e e
sex | -.34799 .1494796 -2.33 0.020 -.6409647  -.0550152
educ | .0401891 .025553 1.57 0.116 -.009894 .0902722
age | --0183109 .0049147 -3.73 0.000 -.0279436  -.0086782
childs | -.1696747 .0536737 -3.16 0.002 -.2748733 -.0644762
_cons | .5412516 -4595609 1.18 0.239 -.3594713 1.441974

Basic interpretation: Women are less likely than men to support legalization of
marijuana. The effect of education is not statistically significant. Those who
are older and have more children are less likely to support legalization.
Divorced people are more likely than married people to support legalization.

*Same with probit
. probit marijuana sex educ age childs

Iteration O: log likelihood = -552.0232
Iteration 1: log likelihood = -525.34877
Iteration 2: log likelihood = -525.21781
Iteration 3: log likelihood = -525.2178
Probit regression Number of obs = 845
LR chi2(4) = 53.61
Prob > chi2 = 0.0000
Log likelihood = -525.2178 Pseudo R2 = 0.0486
marijuana | Coef. Std. Err. z P>|z] [95% Conf. Interval]
_____________ e e e
sex | -.2101429 .0910856 -2.31 0.021 -.3886673 -.0316184
educ | .0229968 .0151532 1.52 0.129 -.006703 .0526965
age | -.0111514 -0029499 -3.78 0.000 -.0169331 -.0053696
childs | -.0984716 .0314167 -3.13 0.002 -.1600472 -.036896
_cons | .3374219 .2782445 1.21 0.225 -.2079273 .8827711
Goodness of fit
. estat gof

Logistic model for marijuana, goodness-of-fit test

number of observations = 845
number of covariate patterns = 748
Pearson chi2(743) = 748.27
Prob > chi2 = 0.4389

The high p-value indicates that model fits well (there is no significant
discrepancy between observed and predicted frequencies). But: this is a chi-
square test that compares observed and predicted outcomes in cells defined by



covariate patterns — all possible combinations of independent variables. In
this case, there are 770 covariate patterns, so it 770 cells for chi-square
test, and therefore very few cases per cell. Not a good situation for a chi-
square test.

Hosmer and Lemeshow suggested an alternative measure that solves the problem of
too many covariate patterns. Rather than compare the observed and predicted
frequencies in each covariate pattern, they divide the data into ten cells by
sorting 1t according to the predicted probabilities and breaking it into deciles
(i.e. the 10% of observations with lowest predicted probabilities form the first
group, then next 10% the next group, etc.). This measure of goodness of fit is
usually preferred over the Pearson chi-square. Here’s how we obtain it:

. estat gof, group(10)
Logistic model for marijuana, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

number of observations = 845
number of groups = 10
Hosmer-Lemeshow chi2(8) = 10.55
Prob > chi2 = 0.2287

Again, the model appears to fit well. If it were not, we could rely on various
diagnostics (discussed below) to improve model fit.

Other measures of fit can be obtained using fitstat. But first, we need to
install it, along with other commands written by Scott Long, the author of our
textbook:

. net search spost
[output omitted]
We need spostado from http://www.indiana.edu/~jslsoc/stata

Now let’s obtain fit statistics for our last model
. fitstat, save
Measures of Fit for logit of marijuana

Log-Lik Intercept Only: -552.023 Log-Lik Full Model: -524.848
D(840): 1049.697 LR(4): 54_350

Prob > LR: 0.000
McFadden®s R2: 0.049 McFadden®s Adj R2: 0.040
ML (Cox-Snell) R2: 0.062 Cragg-Uhler(Nagelkerke) R2: 0.085
McKelvey & Zavoina®"s R2: 0.090 Efron"s R2: 0.065
Variance of y*: 3.615 Variance of error: 3.290
Count R2: 0.669 Adj Count R2: 0.079
AIC: 1.254  AIC*n: 1059.697
BIC: -4611.346  BIC": -27.392
BIC used by Stata: 1083.394  AIC used by Stata: 1059.697

See pp. 104-113 of Long and Freese for details on these measures of fit.
McFadden’s R2 is what’s commonly reported as Pseudo-R2, although that tends to
be fairly low.

Log likelihood value or deviance (-2LL) are also frequently reported. Examining
the ratio of D/df to see how far from 1.0 it is gives us an idea of model fit
(here: 1049.697/840=1.2496393).

Another very useful measure is BIC — based on the differences in BIC between
models, we can select a model with a better fit more reliably than based on a



difference in Pseudo-R2 or even based on Irtest. Here’s how we compare model fit
using fitstat. We already saved the results of the previous model. Let’s say,
we consider adding the marital status dummies:

- xi: logit marijuana sex age educ childs i1.marital

i.marital _Imarital_1-5 (naturally coded; _Imarital_1 omitted)
Logistic regression Number of obs = 845
LR chi2(8) = 74.79
Prob > chi2 = 0.0000
Log likelihood = -514.62716 Pseudo R2 = 0.0677
marijuana | Coef. Std. Err. z P>|z] [95% Conf. Interval]
_____________ S .
sex | -.3620539 .1532607 -2.36 0.018 -.6624394  -.0616684
age | -.0177167 .0056026 -3.16 0.002 -.0286977 -.0067357
educ | .041343 -0263959 1.57 0.117 -.0103919 .0930779
childs | -.1614819 .0581657 -2.78 0.005 -.2754846  -.0474793
_Imarital_2 | .0118099 .3568915 0.03 0.974 -.6876845 .7113043
_Imarital_3 | .9025573 .2053011 4.40 0.000 .5001746 1.30494
_Imarital_4 | .0300665 .4239309 0.07 0.943 -.8008229 .8609558
_Imarital_5 | .2853992 .208832 1.37 0.172 -.123904 .6947024
_cons | .2573784 .5195598 0.50 0.620 -.7609401 1.275697
. fitstat, dif
Measures of Fit for logit of marijuana
Current Saved Difference
Model : logit logit
N: 845 845 0
Log-Lik Intercept Only -552.023 -552.023 0.000
Log-Lik Full Model -514.627 -524.848 10.221
D 1029.254(836) 1049.697(840) 20.443(4)
LR 74.792(8) 54.350(4) 20.443(4)
Prob > LR 0.000 0.000 0.000
McFadden®s R2 0.068 0.049 0.019
McFadden®s Adj R2 0.051 0.040 0.011
ML (Cox-Snell) R2 0.085 0.062 0.022
Cragg-Uhler(Nagelkerke) R2 0.116 0.085 0.031
McKelvey & Zavoina®s R2 0.120 0.090 0.030
Efron®s R2 0.087 0.065 0.023
Variance of y* 3.740 3.615 0.125
Variance of error 3.290 3.290 0.000
Count R2 0.673 0.669 0.005
Adj Count R2 0.092 0.079 0.013
AIC 1.239 1.254 -0.015
AIC*n 1047 .254 1059.697 -12.443
BIC -4604.831 -4611.346 6.515
BIC*® -20.877 -27.392 6.515
BIC used by Stata 1089.908 1083.394 6.515
AIC used by Stata 1047 .254 1059.697 -12.443
Difference of 6.515 in BIC® provides strong support for saved model.

Note: p-value for difference in LR is only valid if models are nested.

This suggests that adding marital status does not add enough to justify adding 4
extra variables. Again, we could consider adding just one dummy, divorced, and
that would probably be “worth it” in terms of model fit.

Here’s how to interpret the difference in BIC (guidelines from Raftery 1995):



TABLE 6
Grades of Evidence Corresponding to Values of the Baves Factor for M,
Against M, the BIC Difference and the Posterior Probability of M,

BIC Difference Bayes Factor p(M,| D)%) Evidence
0-2 1-3 50-75 Weak
2-6 3-20 75-95 Positive
6—10 20-150 95-99 Strong
=10 =150 =09 Very strong

Note that if the variable you add to the second model changes the number of
cases (because of missing data), BIC comparison won’t work. E.g., add income:
. logit marijuana sex age educ childs rincom98

Logistic regression Number of obs = 599
LR chi2(5) = 35.29

Prob > chi2 = 0.0000

Log likelihood = -379.82272 Pseudo R2 = 0.0444
marijuana | Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____________ e e
sex | -.5153134 .181267 -2.84 0.004 -.8705902 -.1600366

age | --.0079214 .0072892 -1.09 0.277 -.0222079 .0063651

educ | -0849509 .0336502 2.52 0.012 .0189976 .1509041

childs | -.2199136 .0676456 -3.25 0.001 -.3524965 -.0873307
rincom98 | -.0352966 .0162986 -2.17 0.030 -.0672413 -.003352
_cons | .3036228 .5639177 0.54 0.590 -.8016357 1.408881

. fitstat, dif
Measures of Fit for logit of marijuana

Current Saved Difference
Model : logit logit
N: 599 845 -246

N"s do not match. To make the comparisons, use the force option.

Because our samples are not the same, so 1t’s problematic to compare models. Do
not use force option, however — such a comparison would not be correct. A better
strategy is to limit both models to the same sample:
. logit marijuana sex age educ childs if rincom98~=.

Logistic regression Number of obs = 599
LR chi2(4) = 30.57

Prob > chi2 = 0.0000

Log likelihood = -382.18666 Pseudo R2 = 0.0385
marijuana | Coef. Std. Err. z P>|z] [95% Conf. Interval]
_____________ e e
sex | -.4295858 .1756775 -2.45 0.014 -.7739073 -.0852643

age | --0096812 .0072661 -1.33 0.183 -.0239226 .0045601

educ | .0604882 .0312321 1.94 0.053 -.0007257 .121702

childs | -.2182796 .0678493 -3.22 0.001 -.3512617 -.0852974
_cons | .0640233 .5479271 0.12 0.907 -1.009894 1.137941

. Fitstat, save



Measures of Fit for logit of marijuana

Log-Lik Intercept Only: -397.470 Log-Lik Full Model: -382.187
D(594): 764.373 LR(4): 30.566
Prob > LR: 0.000
McFadden®s R2: 0.038 McFadden®s Adj R2: 0.026
ML (Cox-Snell) R2: 0.050 Cragg-Uhler(Nagelkerke) R2: 0.068
McKelvey & Zavoina®"s R2: 0.069 Efron"s R2: 0.053
Variance of y*: 3.534 Variance of error: 3.290
Count R2: 0.644  Adj Count R2: 0.062
AlC: 1.293 AIC*n: 774.373
BIC: -3034.412 BIC": -4.985
BIC used by Stata: 796.350 AIC used by Stata: 774.373
- logit marijuana sex age educ childs rincom98
Logistic regression Number of obs = 599
LR chi2(5) = 35.29
Prob > chi2 = 0.0000
Log likelihood = -379.82272 Pseudo R2 = 0.0444
marijuana | Coef. Std. Err z P>|z] [95% Conf. Interval]
_____________ e
sex | -.5153134 .181267 -2.84 0.004 -.8705902 -.1600366
age | -.0079214 .0072892 -1.09 0.277 -.0222079 .0063651
educ | .0849509 .0336502 2.52 0.012 .0189976 .1509041
childs | -.2199136 .0676456 -3.25 0.001 -.3524965 -.0873307
rincom98 | -.0352966 .0162986 -2.17 0.030 -.0672413 -.003352
_cons | .3036228 .5639177 0.54 0.590 -.8016357 1.408881
. fitstat, dif
Measures of Fit for logit of marijuana
Current Saved Difference
Model : logit logit
N: 599 599 0
Log-Lik Intercept Only -397.470 -397.470 0.000
Log-Lik Full Model -379.823 -382.187 2.364
D 759.645(593) 764 .373(594) 4.728(1)
LR 35.294(5) 30.566(4) 4.728(1)
Prob > LR 0.000 0.000 0.030
McFadden®s R2 0.044 0.038 0.006
McFadden®s Adj R2 0.029 0.026 0.003
ML (Cox-Snell) R2 0.057 0.050 0.007
Cragg-Uhler(Nagelkerke) R2 0.078 0.068 0.010
McKelvey & Zavoina®s R2 0.078 0.069 0.009
Efron®s R2 0.060 0.053 0.008
Variance of y* 3.569 3.534 0.035
Variance of error 3.290 3.290 0.000
Count R2 0.658 0.644 0.013
Adj Count R2 0.097 0.062 0.035
AlC 1.288 1.293 -0.005
AIC*n 771.645 774.373 -2.728
BIC -3032.745 -3034.412 1.667
BIC*® -3.317 -4.985 1.667
BIC used by Stata 798.017 796.350 1.667
AIC used by Stata 771.645 774.373 2.728

Difference of

1.667 in BIC" provides weak support

for saved model

Note: p-value for difference in LR is only valid if models are nested.



It looks like based on BIC we wouldn”’t add income to the model. Another way to
assess model fit is to concentrate on its predictive powers. This is especially
important when we plan to use the model for prediction (e.g., we want to predict
who would support legalization of marijuana for a sample that does not contain
those data but contains all our independent variables). One way to assess
predictive power is to look at prediction statistics:

- qui logit marijuana sex age educ childs
[output omitted]

. estat clas

Logistic model for marijuana

———————— True —————-——-
Classified | D ~D ] Total
___________ Y EY S,
+ | 72 48 | 120
- | 232 493 | 725
___________ S S,
Total | 304 541 | 845
Classified + if predicted Pr(D) >= .5
True D defined as marijuana '= 0
Sensitivity Pr(C +] D) 23.68%
Specificity Pr( -]-D) 91.13%
Positive predictive value Pr( D] +) 60.00%
Negative predictive value Pr(-D] -) 68.00%
False + rate for true ~D Pr( +]~-D) 8.87%
False - rate for true D PrC -] D) 76.32%
False + rate for classified + Pr(~-D] +) 40.00%
False - rate for classified - Pr( D] -) 32.00%
Correctly classified 66 .86%

We can see that our model classified correctly 66.86% of cases. Note that it
only classified 120 people out of 845 as supporters of marijuana legalization.
The four cells in the table indicate how classification by the model compares to
true status of each case. The statistics below reflect the percentage from the
table above and indicate predictive success rates and rates of errors.
Sensitivity indicates the percentage of cases with Y=1 that we identified
correctly, and specificity indicates the percentages of cases with Y=0 that we
classified correctly. We can see that our sensitivity is 23.68 but our
specificity is much higher (91.13%). To alter that for a given model, we can
change the cutoff point. In this table, the cutoff is 0.5 — this means that all
observations with predicted probabilities of .5 and above get classified as 1
(i.e. supporters of legalization) and those observations with predicted
probabilities below .5 are classified as 0 (against legalization). It appears
that most cases have predicted probabilities below .5. Let’s try to shift that
cutoff to .3:

. estat clas, cutoff(.3)

Logistic model for marijuana

———————— True —----—---—-
Classified | D ~D | Total
___________ e
+ | 242 329 | 571
- | 62 212 | 274
___________ S Sy S
Total | 304 541 | 845



Classified + if predicted Pr(D) >= .3
True D defined as marijuana '= 0

Sensitivity Pr( +] D) 79.61%
Specificity Pr( -]1-D) 39.19%
Positive predictive value Pr( D] +) 42 .38%
Negative predictive value Pr(-D] -) 77.37%
False + rate for true ~D Pr( +]-D) 60.81%
False - rate for true D Pr(C -] D) 20.39%%
False + rate for classified + Pr(-D] +) 57.62%
False - rate for classified - Pr( D] -) 22.63%
Correctly classified 53.73%

Now our sensitivity and specificity are more balanced. We can further examine
them and then select a cutoff point using the following command that graphs them
against each other:

. Isens
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Looks like the cutoff point of .4 would be close to the point where specificity
and sensitivity are equal. But, the selection of the cutoff will depend on
what’s more important to us — correctly identify Os or 1ls, and what type of
error is more problematic to us — this will depend iIn the task at hand.

Diagnostics for binary logit

Before conducting logistic regression, it might be a good idea to check
univariate distributions of independent variables and if some deviate
substantially from normal and you can easily correct that with a transformation,
then try those transformations. Although normality is not required, it may help
avoid other problems. Obviously, this does not apply to your dependent variable.
Also note that in logistic regression, we do not expect residuals to be normally
distributed.



Further, before conducting multivariate analysis, you should also check the
linearity of bivariate relationships (see below).

1. Multicollinearity

For multicollinearity, we can again use VIFs. But to obtain them, we need to
run a regular OLS regression model with the same variables and then obtain VIFs
— VIF command doesn’t function after logit regression, even though VIF
statistics don’t depend on the dependent variable but rather on the correlations
among the independent ones. So here’s what we’d do:

. qui reg marijuana sex age educ childs _Imarital_3
- vif
Variable | VIF 1/VIF
_____________ S
childs | 1.25 0.800429
age | 1.21 0.823595
educ | 1.04 0.959260
sex | 1.01 0.985564
_Imarital_3 | 1.01 0.989556
_____________ e
|

Mean VIF

2. Linearity

In logistic regression, linearity and additivity in logits is expected (i.e. the
relationships are nonlinear, but they should be linear in terms of the log
odds). Bivariate graphical examination using lowess helps identify problems:

-lowess marijuana age

Lowess smoother
— —| CONOOOS0000000000000000000000000000000000000000000 C000000 © 60 @0 © 00

marijuana

T T T T T
20 40 60 80 100
age of respondent

bandwidth = .8

Note that we should not expect a straight line — after all, probability curve is
not a straight line. But this can help you spot, for instance, a parabola.

In multivariate context, you can use boxtid--don’t forget to specify that you
are using logit rather then reg when using boxtid, i.e. use:
. boxtid logit marijuana sex age educ childs



3. Additivity

You can once again use fitint command to search for interactions; the syntax is
. Fitint logit marijuana sex age educ childs, twoway(sex age educ childs)
factor(sex)

Note that interactions as a method to compare two or more groups can be
problematic in logit or probit models because the coefficients are scaled
according to the differences in residual dispersion. If you are interested in
group comparisons, see:

Allison, Paul D. 1999. “Comparing Logit and Probit Coefficients Across Groups.”
Sociological Methods and Research, 28: 186-208.

Hoetker, Glenn. 2004. “Confounded Coefficients: Extending Recent Advances in the
Accurate Comparison of Logit and Probit Coefficients Across Groups.”
http://www_business.uiuc.edu/Working Papers/papers/03-0100.pdf

Long, Scott. 2006. Comparing Group Effects in Logit and Probit Models.
http://www.umass.edu/family/conference/Long.htm

4. Outliers and influential data points

To detect influential observations and outliers, there are a few statistics you
can obtain using predict command after logit

p predicted probability of a positive outcome; the default
xb linear prediction
stdp standard error of the linear prediction

dbeta Pregibon (1981) Delta-Beta influence statistic

deviance deviance residual

dx2 Hosmer and Lemeshow (2000) Delta chi-squared infl. stat.
ddeviance Hosmer and Lemeshow (2000) Delta-D influence statistic

hat Pregibon (1981) leverage

number sequential number of the covariate pattern

residuals Pearson residual (adj. for # sharing covariate pattern)
rstandard standardized Pearson residual (adj. for # sharing covariate
pattern)

To examine residuals, it is recommended to use standardized Pearson residual
that accounts for in-built heteroscedasticity of residuals in the logit model.

- logit marijuana sex age educ childs
[Output omitted]

. predict rstandard, rs
(1920 missing values generated)

We can plot residuals against the predicted values and examine observations with
residuals high in absolute value:

. predict prob
(option p assumed; Pr(marijuana))
(25 missing values generated)

. scatter prob rstandard, xline(0) mlabel (id)
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Observations on the far left or far right deserve further examination.
would especially look at 766 and 2189, but also 2673.

Here, we

To identify influential observations, we can obtain a number of leverage
statistics:

. predict dbeta, dbeta

(1920 missing values generated)

. predict hat, hat

(1920 missing values generated)

. predict dx2, dx2

(1920 missing values generated)

We can then examine these graphically to identify problematic observations:
. scatter dbeta prob, mlabel(id)

0
“

® 766
® 2189

1
]

Pregibon's dbeta

[ ] 26’3

236
® 223

°
® 72
o 318 642

910

® 2830

.05
|

® 794
o 1005% “385 522

Observations 766, 2189 stand out again as the ones with highest values of dbeta

Can similarly examine dx2 and hat values
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We can also combine the information about multiple leverage statistics in one
plot:
. scatter dbeta rs [w=dx2], mfc(white) xline(0)

n
=

A
1

Pregibon's dbeta

.05
|

0
standardized Pearson residual
Again those two observations (we can verify that they are the same ones by using
mlabel option). These observations definitely warrant investigation — we need
to figure out what’s special about them and then decide how to deal with them.

5. Error term distribution

In terms of the error term distribution, we don’t check for it directly (like
with heteroscedasticity test in OLS). There is in-built heteroscedasticity in
logit models — the variance of the error term is the greatest at the predicted
probabilities around .5 and the smallest as we approach O or 1. But we still
should be concerned whether the logit assumptions about the variance of the
error term are correct. To test that, we can obtain robust standard error
estimates and compare them with the regular standard error estimates. If they
are similar, then our logistic results are fine. |If they differ a lot, however,
we would rather report robust standard errors as they do are correct even in the
presence of assumptions violation.

. logit marijuana sex age educ childs

Logistic regression Number of obs = 845
LR chi2(4) = 54.35

Prob > chi2 = 0.0000

Log likelihood = -524.84843 Pseudo R2 = 0.0492
marijuana | Coef. Std. Err. z P>|z] [95% Conf. Interval]
_____________ e
sex | -.34799 .1494796 -2.33 0.020 -.6409647  -.0550152

age | --0183109 .0049147 -3.73 0.000 -.0279436  -.0086782

educ | .0401891 .025553 1.57 0.116 -.009894 .0902722

childs | -.1696747 .0536737 -3.16 0.002 -.2748733 -.0644762
_cons | .5412516 .4595609 1.18 0.239 -.3594713 1.441974
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. logit marijuana sex age educ childs, robust

Logistic regression Number of obs = 845

Wald chi2(4) = 44 .52

Prob > chi2 = 0.0000

Log pseudolikelihood = -524.84843 Pseudo R2 = 0.0492
| Robust

marijuana | Coef. Std. Err. z P>|z] [95% Conf. Interval]

_____________ e e

sex | -.34799 -149609 -2.33 0.020 -.6412182 -.0547617

age | -.0183109 .0048417 -3.78 0.000 -.0278003 -.0088214

educ | .0401891 .0269052 1.49 0.135 -.0125441 .0929223

childs | -.1696747 .0566388 -3.00 0.003 -.2806846  -.0586648

_cons | .5412516 .4677331 1.16 0.247 -.3754884 1.457992

The two sets of standard errors look the same — no violation of assumptions
about error distribution.

6. Overdispersion

In logistic regression, the expected variance of the dependent variable can be
compared to the observed variance, and discrepancies may be considered under- or
overdispersion. If there is substantial discrepancy, standard errors will be
over-optimistic. The expected variance is ybar*(1 - ybar), where ybar is the
mean of the fitted values. This can be compared with the actual variance in
observed DV to assess under- or overdispersion. We can see the extent of
overdispersion by examining the ratio of D/df (where D is the deviance (-2LL)
and df=N-k) -- given that we eliminated other reasons for deviance to be large
(e.g., outliers, nonlinearities, other model specification errors like omitted
variables). In the fitstat output, we find D(df=840) is 1049.697. The ratio is
. di 1049.697/840

1.2496393

The ratio is close enough to 1 for us not to worry. If there is overdispersion
(which is much more common than underdispersion), we can use adjusted standard
errors. Adjusted standard errors will make the confidence intervals wider.
Adjusted SE equals SE * sqrt(D/df), where D is the deviance (-2LL) and df=N-k.
However, typically overdispersion reflects the fact that we need to respecify
the model (i.e. we omitted an important variable), or that our observations are
not independent — i.e., data over time or clusters of observations. We’ll
discuss methods to deal with clusters of observation later in the course.

Binary Logit Interpretation

As logistic regression models (whether binary, ordered, or multinomial) are
nonlinear, they pose a challenge for interpretation. The increase in the
dependent variable in a linear model is constant for all values of X. Not so
for logit models — probability increases or decreases per unit change in X is
nonconstant, as illustrated in this picture.
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Panel A: Linear Model
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Panel B: Nonlinear Model
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When interpreting logit regression coefficients, we can interpret only the sign
and significance of the coefficients — cannot interpret the size. The following
picture can give you an idea how the shape of the curve varies depending on the
size of the coefficient, however. Note that, similarly to OLS regression, the
constant determines the position of the curve along the X axis and the
coefficient (beta) determines the slope.
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Next, we”’ll examine various ways to interpret logistic regression results.

1. Coefficients and Odds Ratios
We” 1l use another model, focusing now on the probability of voting.
. codebook vote0O0
voteO0
did r vote 1in 2000 election
type: numeric (byte)
label: voteOO

range: [1,4] units: 1
unique values: 4 missing .: 14/2765
tabulation: Freq. Numeric Label

1780 1 voted

822 2 did not vote

138 3 ineligible
11 4 refused to answer
14

- gen vote=(vote00==1) if vote00<3
(163 missing values generated)
- gen married=(marital==1)

. logit vote age sex born married childs educ

Iteration O: log likelihood = -1616.8899
Iteration 1: log likelihood = -1365.9814
Iteration 2: log likelihood = -1353.4091
Iteration 3: log likelihood = -1353.2224
Iteration 4: log likelihood = -1353.2224

Logistic regression Number of obs = 2590

LR chi2(6) = 527.33

Prob > chi2 = 0.0000

Log likelihood = -1353.2224 Pseudo R2 = 0.1631

vote | Coef. Std. Err. z P>|z] [95% Conf. Interval]

_____________ e e e

age | .0466321 .003337 13.97 0.000 .0400917 .0531726

sex | -1094233 .09552 1.15 0.252 -.0777924 .296639

born | -.9673683 .1859278 -5.20 0.000 -1.33178 -.6029564

married | -4911099 .0983711 4.99 0.000 .2983062 .6839136

childs | -.0391447 .0327343 -1.20 0.232 -.1033028 .0250133

educ | .2862839 .0197681 14.48 0.000 .2475391 .3250287

_cons | -4.352327 -3892601 -11.18 0.000 -5.115263 -3.589391

These are regular logit coefficients; so we can interpret the sign and
significance but not the size of effects. So we can say that age increases the
probability of voting but we can’t say by how much — that’s because a 1 year
increase in age will not affect the probability the same way for a 30 year old
and for a 40 year old.

To be able to interpret effect size, we turn to odds ratios. Note that odds

ratios are only appropriate for logistic regression — they don’t work for probit
models.
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Odds are ratios of two probabilities — probability of a positive outcome and a
probability of a negative outcome (e.g. probability of voting divided by a
probability of not voting). But since probabilities vary depending on values of
X, such a ratio varies as well. What remains constant is the ratio of such odds
— e.g. odds of voting for women divided by odds of voting for men will be the
same number regardless of the values of other variables. Similarly, the odds
ratio for age can be a ratio of the odds of voting for someone who is 31 y.o. to
the odds of a 30 y.o. person, or of a 41 y.o. to a 40 y.o. person’s odds — these
will be the same regardless of what age values you pick, as long as they are one
year apart. So let’s examine the odds ratios.

. logit vote age sex born married childs educ, or

Iteration O: log likelihood = -1616.8899
Iteration 1: log likelihood = -1365.9814
Iteration 2: log likelihood = -1353.4091
Iteration 3: log likelihood = -1353.2224
Iteration 4: log likelihood = -1353.2224
Logistic regression Number of obs = 2590
LR chi2(6) = 527.33
Prob > chi2 = 0.0000
Log likelihood = -1353.2224 Pseudo R2 = 0.1631
vote | Odds Ratio  Std. Err z P>|z] [95% Conf. Interval]
_____________ e e e
age | 1.047736 -0034963 13.97 0.000 1.040906 1.054612
sex | 1.115634 -1065654 1.15 0.252 .9251564 1.34533
born | -380082 .0706678 -5.20 0.000 .2640069 .5471915
married | 1.634129 -160751 4.99 0.000 1.347574 1.981618
childs | -9616115 .0314777 -1.20 0.232 .9018538 1.025329
educ | 1.33147 .0263207 14.48 0.000 1.280869 1.38407

Another way to obtain odds ratios would be

“logit” — it automatically displays odds ratios instead of coefficients.

to use “logistic” command instead of

But

yet another, more convenient way is to use listcoef command (that’s one of the
commands written by Scott Long that we downloaded as a part of spost package):

. listcoef

logit (N=2590): Factor Change in 0dds
Odds of: 1 vs O

vote | b z P>|z] e”b ebStdX SDofX
_____________ e e
age | 0.04663 13.974 0.000 1.0477 2.2297 17.1953

sex | 0.10942 1.146 0.252 1.1156 1.0559 0.4972

born | -0.96737 -5.203 0.000 0.3801 0.7885 0.2457

married | 0.49111 4.992 0.000 1.6341 1.2777 0.4990
childs | -0.03914 -1.196 0.232 0.9616 0.9365 1.6762

educ | 0.28628 14.482 0.000 1.3315 2.3108 2.9257

The advantage of listcoef is that it reports regular coefficients, odds ratios,
and standardized odds ratios in one table.

Odds ratios are exponentiated logistic regression coefficients. They are
sometimes called factor coefficients, because they are multiplicative
coefficients. 0dds ratios are equal to 1 if there is no effect, smaller than 1
if the effect is negative and larger than 1 if it is positive. So for example,
the odds ratio for married indicates that the odds of voting for those who are
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married are 1.63 times higher than for those who are not married. And the odds
ratio for education indicates that each additional year of education makes one’s
odds of voting 1.33 times higher -- or, In other words, increases those odds by
33%. To get percent change directly, we can use percent option:

. listcoef, percent
logit (N=2590): Percentage Change in Odds
Odds of: 1 vs O

vote | b z P>]z| % %StdX SDofX
_____________ -
age | 0.04663 13.974 0.000 4.8 123.0  17.1953

sex | 0.10942  1.146 0.252 11.6 5.6 0.4972

born | -0.96737 -5.203 0.000 -62.0  -21.2 0.2457

married | 0.49111  4.992  0.000 63.4 27.8 0.4990
childs | -0.03914 -1.196 0.232 -3.8 -6.4 1.6762

educ | 0.28628 14.482  0.000 33.1  131.1 2.9257

Beware: if you would like to know what the increase would be per, say, 10 units
increase in the independent variable — e.g. 10 years of education, you cannot
simply multiple the odds ratio by 10! The coefficient, in fact, would be odds
ratio to the power of 10. Or alternatively, you could take the regular logit
coefficient, multiply it by 10 and then exponentiate it -- e.g. for education:
. di exp(0.28628*10)

17.510488

. di 1.3315"10

17.515063

Standardized odds ratios (presented under e”bStdX) are similar to regular odds
ratios, but they display the change in the odds of voting per one standard
deviation change in the independent variable. The last column in the table
generated by listcoef shows what one standard deviation for each variable is.
So for age the standardized odds ratio indicates that 17 years of age increase
one’s odds of voting 2.23 times, or by 123%. Standardized odds ratios, like
standardized coefficients in OLS, allow us to compare effect sizes across
variables regardless of their measurement units. But, beware of comparing
negative and positive effects — odds ratios of 1.5 and .5 are not equivalent,
even though the first one represents a 50% increase in odds and the second one
represents a 50% decrease. This is because odds ratios cannot be below zero
(there cannot be a decrease more than 100%), but they do not have an upper bound
— 1.e. can be infinitely high. 1In order to be able to compare positive and
negative effects, we can reverse odds ratios and generate odds ratios for odds
of not voting (rather than odds of voting).
. listcoef, reverse
logit (N=2590): Factor Change in 0Odds

Odds of: 0 vs 1

vote | b z P>|z] e”b ebStdX SDoftX
_____________ e
age | 0.04663 13.974 0.000 0.9544  0.4485 17.1953

sex | 0.10942 1.146 0.252 0.8964 0.9470 0.4972

born | -0.96737 -5.203 0.000 2.6310 1.2682 0.2457

married | 0.49111 4.992 0.000 0.6119 0.7826 0.4990
childs | -0.03914 -1.196 0.232 1.0399 1.0678 1.6762

educ | 0.28628 14.482 0.000 0.7510 0.4328 2.9257

We can see for example that the odds ratio of 0.3801 for born is a negative
effect corresponding in size to a positive odds ratio of 2.6310.
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Listcoef also has a help option that explains what’s what in the table:

. listcoef, reverse help
logit (N=2590): Factor Change in 0Odds
Odds of: 0 vs 1

vote | b z P>|z] e”b e~bStdX SDofX
_____________ e e
age | 0.04663 13.974 0.000 0.9544 0.4485 17.1953
sex | 0.10942 1.146 0.252 0.8964 0.9470 0.4972
born | -0.96737 -5.203 0.000 2.6310 1.2682 0.2457
married | 0.49111 4.992 0.000 0.6119 0.7826 0.4990
childs | -0.03914 -1.196 0.232 1.0399 1.0678 1.6762
educ | 0.28628 14.482 0.000 0.7510 0.4328 2.9257
b = raw coefficient
z = z-score for test of b=0
P>]z] = p-value for z-test
e”"b = exp(b) = factor change in odds for unit increase in X
e”bStdX = exp(b*SD of X) = change in odds for SD increase in X
SDofX = standard deviation of X

2. Predicted Probabilities

In addition to regular coefficients and odds ratios, we also should examine
predicted probabilities — both for the actual observations in our data and for
strategically selected hypothetical cases. Predicted probabilities are always
calculated for a specific set of independent variables” values. One thing we
can calculate i1s predicted probabilities for the actual data that we have — for
each case, we take the values of all independent variables and plug it into the
equation:

. predict prob
(option p assumed; Pr(vote))
(26 missing values generated)
. sum prob if e(sample)
Variable | Obs Mean Std. Dev. Min Max
prob | 2590 .6833977 .204702 .0205784 -9926677

Mean of predicted probabilities represents the average proportion in the sample:

. sum vote if e(sample)

Variable | Obs Mean Std. Dev. Min Max
_____________ e e
vote | 2590 .6833977 .4652406 0 1

These are predicted probabilities for the actual cases In our dataset. It can

be useful, however, to calculate predicted probabilities for hypothetical sets
of values — some interesting combinations that we could compare and contrast.

- prvalue
logit: Predictions for vote
Confidence intervals by delta method
95% Conf. Interval
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Pr(y=1]x): 0.7249 [ 0.7052, 0.7446]
Pr{y=0]x): 0.2751 [ 0.2554, 0.2948]
age sex born married childs educ
x= 46.935907 1.5532819 1.0644788 .46756757 1.8389961 13.394595

This calculates a predicted probability for a case with all values set at the
mean. So an ‘“‘average” person has 72.5% chance of voting. We can also see what
these averages are. Clearly, for some variables they don’t make sense — we
don’t want to use averages for dummy variables; rather, we’d want to specify
what values to use. Here are some examples of specifying values:
. prvalue, x(age=30 born=1 sex=2 married=0)
logit: Predictions for vote
Confidence intervals by delta method

95% Conf. Interval

Pr(y=1]x): 0.5152 [ 0.4722, 0.5582]
Pr(y=0]x): 0.4848 [ 0.4418, 0.5278]
age sex born married childs educ
X= 30 2 1 0 1.8389961 13.394595

This is the predicted value for someone who is 30, native born, female, and
unmarried (and has average number of children and average education).

Note that if you have a set of dummy variables, you should always specify values
for each of them in prvalue command. E.g. iIf we were using 4 marital status
dummies, we’d have to specify all of them, otherwise, some of them will be
assigned their mean values and your calculation will be unrealistic.

- Xi: qui logit vote age sex born i.marital childs educ
- prvalue, x( _Imarital_2=1 _Imarital_3=0 _Imarital_4=0 _Imarital_5=0)
logit: Predictions for vote
Confidence intervals by delta method
95% Conf. Interval

Pr(y=1]x): 0.6736 [ 0.5908, 0.7565]
Pr(y=0]x): 0.3264 [ 0.2435, 0.4092]
age sex born _Imarital_2 _Imarital_3 _Imarital 4
_Imarital_5 childs educ
X= 46.935907 1.5532819 1.0644788 1 0 0

0 1.8389961 13.394595
Note: to get the predicted probability for the omitted category, we need to
specify all zeros.

We can also use prtab to obtain values of predicted probabilities for various
combinations of categorical variables — we can select one variable at a time or
up to four variables in this command — but note that we need to specify what
values to use for all other variables — e.g. in this case, all other variables
are set at the mean.

- qui logit vote age sex born married childs educ
. prtab born married, rest(mean)
logit: Predicted probabilities of positive outcome for vote

was r |

born in |

this | married
country | 0 1
__________ S

yes | 0.6903 0.7846
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no | 0.4587 0.5806
age sex born married childs educ
x= 46.935907 1.5532819 1.0644788 .46756757 1.8389961 13.394595

This allows us to see that the effect of one variable depends on the level of
the other — for native born individuals, marriage increases chances of voting by
9.5%, but for the foreign born, marriage increases these chances by 12._2%.

And we can use conditions:
. prtab childs born if married ==1
logit: Predicted probabilities of positive outcome for vote

was r born in

|

number of | this country

children | yes no

______________ S

none | 0.8153 0.6265

one | 0.8093 0.6173

two | 0.8032 0.6080

three | 0.7969 0.5987

four | 0.7905 0.5892

five | 0.7840 0.5797

six | 0.7773 0.5702

seven | 0.7704 0.5605

eight or more | 0.7634 0.5509
age sex born married childs educ
x= 48.010735 1.5111478 1.0817506 1 2.1965318 13.654831

But note that the means used in this case are the means for the subgroup
specified by these conditions (in this case, for the married). If you want to
use the means for the whole sample, you”’d have to specify them using x option:
. prtab childs born if married ==1, x(age=46.935907 sex=1.5532819 educ=
13.394595)

logit: Predicted probabilities of positive outcome for vote

was r born in

|

number of | this country

children | yes no

______________ RS

none | 0.7965 0.5981

one | 0.7901 0.5886

two | 0.7835 0.5791

three | 0.7768 0.5695

four | 0.7700 0.5599

five | 0.7630 0.5502

six | 0.7558 0.5405

seven | 0.7485 0.5308

eight or more | 0.7411 0.5210
age sex born married childs educ
x= 46.935907 1.5532819 1.0817506 1 2.1965318 13.394595

Note that it only makes sense to create such tables of predicted probabilities
for variables that have significant effects — otherwise, you’ll see no
differences. And if you have sets of dummy variables, you are better off using
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prvalue to obtain your predicted values (see above); prtab can be quite
confusing for such cases.

Further, we can use prgen to generate new variables containing probabilities for
certain sets of values. This is useful with continuous variables, as it allows
us to see how predicted probability changes across values of one variable (given
that the rest of them are set at some specific values).

In the following example, we generate predicted values for 7 different ages --
20, 80, and 5 more points in between. We generate these for four groups defined
by education (10, 12, 16, 20). The rest of the variables are set at mean.

We”ll add labels to the new variables containing predicted probabilities.

. for num 10 12 16 20: prgen age, from (20) to (80) gen(preducX) x(educ=X)
rest(mean) n(7) \ lab var preducXpl "education=X"

-> prgen age, from (20) to (80) gen(preducl0) x(educ=10) rest(mean) n(7)
logit: Predicted values as age varies from 20 to 80.

age sex born married childs educ
X= 46.935907 1.5532819 1.0644788 .46756757 1.8389961 10

~r

-> lab var preduclOpl education=10""

-> prgen age, from (20) to (80) gen(preducl?2) x(educ=12) rest(mean) n(7)
logit: Predicted values as age varies from 20 to 80.

age sex born married childs educ
X= 46.935907 1.5532819 1.0644788 .46756757 1.8389961 12

~nr

-> lab var preducl2?2pil education=12""

-> prgen age, from (20) to (80) gen(preducl6) x(educ=16) rest(mean) n(7)
logit: Predicted values as age varies from 20 to 80.

age sex born married childs educ
X= 46.935907 1.5532819 1.0644788 .46756757 1.8389961 16

-> lab var preduclépl education=16""

-> prgen age, from (20) to (80) gen(preduc20) x(educ=20) rest(mean) n(7)
logit: Predicted values as age varies from 20 to 80.

age sex born married childs educ
X= 46.935907 1.5532819 1.0644788 .46756757 1.8389961 20

-> lab var preduc20pl education=20

Now we can plot four curves that show how probability of voting changes by age

for an average person who has 10, 12, 16, or 10 years of education.
. graph twoway connected preduclOpl preducl2pl preducl6pl preduc20pl preduc20x
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T T T T
20 40 60 80
age of respondent

—=e—— education=10 ——&-—- education=12
----- ®---- education=16 —-4&—-- education=20

IT there are interactions or nonlinearities that required that you entered a
variable more than once (e.g. X and X squared), you can use adjust command to do
the graphs. This is done in the same manner as we did in OLS, but we need to use
pr option to get probabilities rather than linear prediction (xb). This is the
best way to examine what interactions mean in logit models, because their value
For example we can replicate our previous graph. We run adjust command omitting
age and educ:

. adjust sex born married childs if e(sample), gen(probl) pr
Dependent variable: vote Command: logit
Created variable: probl
Variables left as is: age, educ
Covariates set to mean: sex = 1.5532819, born = 1.0644788, married = .46756756,
childs = 1.8389962

ALl | pr

__________ e
| .724903

Key: pr = Probability

. separate probl, by(educ)
storage display value

variable name type format label variable label
probl10 float %9.0g probl, educ == 0
probll float %9.0g probl, educ == 1
probl2 float %9.0g probl, educ == 2
probl3 float %9.0g probl, educ == 3
probl4 float %9.0g probl, educ == 4
probl5 float %9.0g probl, educ == 5
probl6 float %9.0g probl, educ == 6
probl7 float %9.0g probl, educ == 7
probl8 float %9.0g probl, educ == 8
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probl9 float %9.0g probl, educ ==

probl110 float %9.0g probl, educ == 10
probl11l float %9.0g probl, educ == 11
prob112 float %9.0g probl, educ == 12
prob113 float %9.0g probl, educ == 13
probl14 float %9.0g probl, educ == 14
probl15 float %9.0g probl, educ == 15
prob116 float %9.0g probl, educ == 16
prob117 float %9.0g probl, educ == 17
prob118 float %9.0g probl, educ == 18
probl119 float %9.0g probl, educ == 19
prob120 float %9.0g probl, educ == 20

. line probl10 probl12 probl1l6 probl20 age, sort

——

- 4

T T T T T
20 40 60 80 100
age of respondent

probl, educ == 10 probl, educ == 12
probl, educ == 16 probl, educ == 20

3. Changes in Predicted Probabilities

Another way to interpret logistic regression results is using changes in
predicted probabilities. These are changes in probability of the outcome as one
variable changes, holding all other variables constant at certain values. There
are two ways to measure such changes — discrete change and marginal effect.

A. Discrete change
Discrete change is a change in predicted probabilities corresponding to a given
change in the independent variable. To obtain these, we calculate two
probabilities and then calculate the difference between them. These can be
obtained using prvalue command, but it is much easier to do using prchange:
. prchange
logit: Changes in Probabilities for vote
min->max 0->1 -+1/2 -+sd/2 MargEfct
age 0.5320 0.0083 0.0093 0.1591 0.0093
sex 0.0219 0.0229 0.0218 0.0109 0.0218
born -0.2212 -0.1435 -0.1914 -0.0474 -0.1929
married 0.0970 0.0970 0.0977 0.0489 0.0979
childs -0.0647 -0.0076 -0.0078 -0.0131 -0.0078
educ 0.8920 0.0166 0.0571 0.1661 0.0571
0 1
Pr(y|x) 0.2751 0.7249

age sex born married childs educ
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X= 46.9359 1.55328 1.06448 _467568

1.839 13.3946
sd(x)= 17.1953 .497249 .245651 .499043 1.67616 2.92567

Here we can see how probability changes when we go from the minimum value of
each variable, e.g. education, to its maximum, how it changes when we go from O
to 1, how it changes per one unit at the mean (that is displayed as -+1/2
because it calculates the differences between mean-1 and mean+l, and then
divides it by 2. Then there is the change per one standard deviation, also
around the mean. We can also get a clear explanation of what’s what using help

option:

. prchange, help
logit: Changes in Probabilities for vote

min->max 0->1 -+1/2 -+sd/2

age 0.5320 0.0083 0.0093 0.1591
sex 0.0219 0.0229 0.0218 0.0109
born -0.2212 -0.1435 -0.1914 -0.0474
married 0.0970 0.0970 0.0977 0.0489
childs -0.0647 -0.0076 -0.0078 -0.0131
educ 0.8920 0.0166 0.0571 0.1661

0 1
Pr(y|x) 0.2751 0.7249

age sex born married
Xx= 46.9359 1.55328 1.06448 .467568

MargEfct

0.
0.
-0.
0.
-0.
0.

childs
1.839 13.3946
sd(x)= 17.1953 .497249 .245651 .499043 1.67616 2.92567

0093
0218
1929
0979
0078
0571

educ

Pr(y|x): probability of observing each y for specified x values
Avg|Chg]: average of absolute value of the change across categories
its minimum to

Min->Max: change in predicted probability as

its maximum

0->1: change in predicted probability as
-+1/2: change in predicted probability as

base value to 1/2 unit above

-+sd/2: change in predicted probability as
dev below base to 1/2 standard dev
MargEfct: the partial derivative of the predicted probability/rate with

X changes
X changes from

respect to a given independent variable

X changes from

X changes from
above

from 0 to 1

1/2 unit below

1/2 standard

We can also run prchange with fromto option to get starting and ending
probabilities in addition to the amount of change:

. prchange, fromto
logit: Changes in Probabilities for vote

from: to: dif: from: to: dif:

x=min X=max min->max x=0 x=1 0->1

age 0.4173 0.9493 0.5320 0.2280 0.2363 0.0083
sex 0.7127 0.7345 0.0219 0.6897 0.7127 0.0229
born 0.7372 0.5160 -0.2212 0.8807 0.7372  -0.1435
married 0.6768 0.7739 0.0970 0.6768 0.7739 0.0970
childs 0.7390 0.6743 -0.0647 0.7390 0.7314 -0.0076
educ 0.0539 0.9458 0.8920 0.0539 0.0705 0.0166

MargEfct

age 0.0093

sex 0.0218
born -0.1929
married 0.0979

from:

x-1/2
0.7202
0.7139
0.8104
0.6733
0.7288
0.6955

to:

x+1/2
0.7295
0.7357
0.6190
0.7711
0.7210
0.7525

dif:

-+1/2
0.0093
0.0218
-0.1914
0.0977
-0.0078
0.0571

from:

x-1/2sd
0.6383
0.7194
0.7480
0.6998
0.7314
0.6342

to:

x+1/2sd
0.7974
0.7303
0.7006
0.7487
0.7183
0.8002

dif:
-+sd/2
0.1591
0.0109
-0.0474
0.0489
-0.0131
0.1661
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childs -0.0078
educ 0.0571

0 1
Pr(y]x) 0.2751 0.7249

age sex born married childs educ

x= 46.9359 1.55328 1.06448 .467568 1.839 13.3946
sd(x)= 17.1953 .497249 .245651 .499043 1.67616 2.92567
We can customize the amount of change in X using delta option, set the value of
X to whatever we want, and we can also select uncentered option if we don’t want
our selected interval to be centered at X but would rather prefer it to start at
X. For example, with and without uncentered option:
. prchange educ, x(educ=16) delta(4) uncentered
logit: Changes in Probabilities for vote
(Note: delta = 4)

min->max 0->1 +delta +sd MargEfct
educ 0.8920 0.0166 0.0984 0.0803 0.0370

0 1

Pr(y|x) 0.1525 0.8475
age sex born married childs educ
x= 46.9359 1.55328 1.06448 .467568 1.839 16

sd(x)= 17.1953 .497249 .245651 .499043 1.67616 2.92567

. prchange educ, x(educ=16) delta(4)
logit: Changes in Probabilities for vote

(Note: d = 4)

min->max 0->1 -+d/2 -+sd/2 MargEfct
educ 0.8920 0.0166 0.1497 0.1090 0.0370
0 1
Pr(y|x) 0.1525 0.8475
age sex born married childs educ
x= 46.9359 1.55328 1.06448 .467568 1.839 16

sd(x)= 17.1953 .497249 .245651 .499043 1.67616 2.92567

B. Marginal effects.

The last column of prchange output presents marginal effects — these are partial
derivatives, slopes of probability curve at a certain set of values of
independent variables. Marginal effects, of course, vary along X; they are the
largest at the value of X that corresponds to P(Y=1]|X)=.5 — this can be seen in
the graph.

26



1.00

1
— Pr(y="1Ix)=F(x§) |— ot
=== Pr(y=1ix)/dx |

0.00 0.25 0.50 0.75

Figure 3.12. Marginal Effect in the Binary Response Model
Usually, if marginal effects are presented in journal articles, they are

evaluated with all variables held at their means. In case of logistic
regression, marginal effect for X can be calculated as P(Y=1]X)*P(Y=0]X)*b; For

example, we can replicate the last result,

di 0.1525*0.8475*0.28628

.0369999

The following graph compares a marginal change and a discrete change at a
specific point:

Pr(y=1?

Figure 3.13. Partial Change Versus Discrete Change in Nonlinear Models

We can also generate marginal effects with standard errors using mfx compute.
Computing those standard errors can take a while, however.
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. mfx compute

Marginal effects after logit
y = Pr(vote) (predict)

= .72490265

variable | dy/dx Std. Err z P>lz] [ 95% C.1I. 1 X
_________ e e e
age | .0092993 .00064 14.50 0.000 .008042 .010556 46.9359
sex | .0218211 .01905 1.15 0.252 -.015522 .059164 1.55328
born | -.1929114 .03711 -5.20 0.000 -.265655 -.120167 1.06448
married*| .0970482 .0192 5.05 0.000 .059412 .134684 .467568
childs | -.0078062 .00653 -1.20 0.232 -.020596 .004984 1.839
educ | .0570904 .00382 14.96 0.000 .04961 .064571  13.3946

(*) dy/dx is for discrete change of dummy variable from O to 1

Marginal effects are inappropriate for binary independent variables; that’s why
discrete changes are reported for those instead.

We could also specify other values of X for this computation using “at” option:
. mfx compute, at(age=30)
[output omitted]

Note: For binary dependent variables, though, marginal effects are not very
useful — discrete changes are more easily interpretable.

Also note that marginal effects in models with interactions or higher order
terms are complicated to estimate. To learn more about that, you can consult
http://www.stata.com/support/fags/stat/mfx_interact.html

and

http://www.unc.edu/~enorton/NortonWangAi . pdf

And to learn more about interactions in logistic models:
http://www.ats.ucla.edu/stat/stata/seminars/stata vibl/

Binary Logit Article Example:

Alba, Richard, John Logan, Amy Lutz, and Brian Stults. 2002. “Only English by
the Third Generation? Loss and Preservation of the Mother Tongue among the
Grandchildren of Contemporary Immigrants.” Demography, 39: 467-484.

Questions to answer about the article:

1. What are the dependent and the independent variables in this analysis?

2. What is reported in Table 4? How can we interpret these results? How do the
authors discuss these results iIn the text?

3. What is reported in Table 5? How can we interpret these results?

4. In addition to what the authors chose to present, how else could they have
presented their results?

5. What measures of model fit and model diagnostics are presented? What
diagnostics and potential problems did the authors not address?
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