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Sociology 704: Topics in Multivariate Statistics 
Instructor: Natasha Sarkisian 

 
Binary Logit 

 
Binary models deal with binary (0/1, yes/no) dependent variables.  OLS is 
inappropriate for this kind of dependent variable because we would violate 
numerous OLS assumptions (e.g., that the dependent variable is quantitative, 
continuous, and unbounded, or that the error terms should be homoscedastic and 
normally distributed).  
 
Two main types of binary regression models are used most often – logit and 
probit.  The two types differ in terms of the assumed variance of the error 
term, but in practice their results are usually very similar, and the choice 
between the two is mainly the matter of taste and discipline conventions.  We’ll 
mostly focus on logit models.  
 
Binary logit and probit models as well as other models we’ll discuss this 
semester are estimated using Maximum Likelihood estimation techniques – 
numerical, iterative techniques that search for a set of parameters with the 
highest level of the likelihood function (likelihood function tells us how 
likely it is that we would observe the data in hand for each set of parameters, 
and in fact what we maximize is the log of this likelihood function).  This 
process is a trial and error process.  Logit or probit output includes 
information on iterations – those iterations are the steps in that search 
process.  Sometimes, with complicated models, the computer cannot find that 
maximum – then we get convergence problems.  But this never happens with binary 
logit or probit models. 
 
To run logit or probit models in Stata, the dependent variable has to be coded 
0/1 -- it cannot be 1 and 2, or anything else.  Let’s generate a 0/1 variable: 
. codebook grass 
--------------------------------------------------------------------------------
grass                                                                                       
should marijuana be made legal 
-------------------------------------------------------------------------------- 
                  type:  numeric (byte) 
                 label:  grass 
                 range:  [1,2]                        units:  1 
         unique values:  2                        missing .:  1914/2765 
 
            tabulation:  Freq.   Numeric  Label 
                           306         1  legal 
                           545         2  not legal 
                          1914         .   
 
. gen marijuana=(grass==1) if grass~=. 
(1914 missing values generated) 
. tab marijuana, miss 
  marijuana |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          0 |        545       19.71       19.71 
          1 |        306       11.07       30.78 
          . |      1,914       69.22      100.00 
------------+----------------------------------- 
      Total |      2,765      100.00 
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. xi: logit marijuana sex educ age childs 
Iteration 0:   log likelihood =  -552.0232 
Iteration 1:   log likelihood = -525.24385 
Iteration 2:   log likelihood = -524.84887 
Iteration 3:   log likelihood = -524.84843 
Logistic regression                               Number of obs   =        845 
                                                  LR chi2(4)      =      54.35 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -524.84843                       Pseudo R2       =     0.0492 
 
------------------------------------------------------------------------------ 
   marijuana |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sex |    -.34799   .1494796    -2.33   0.020    -.6409647   -.0550152 
        educ |   .0401891    .025553     1.57   0.116     -.009894    .0902722 
         age |  -.0183109   .0049147    -3.73   0.000    -.0279436   -.0086782 
      childs |  -.1696747   .0536737    -3.16   0.002    -.2748733   -.0644762 
       _cons |   .5412516   .4595609     1.18   0.239    -.3594713    1.441974 
------------------------------------------------------------------------------ 
Basic interpretation: Women are less likely than men to support legalization of 
marijuana.  The effect of education is not statistically significant. Those who 
are older and have more children are less likely to support legalization.  
Divorced people are more likely than married people to support legalization. 
 
*Same with probit 
. probit marijuana sex educ age childs 
Iteration 0:   log likelihood =  -552.0232 
Iteration 1:   log likelihood = -525.34877 
Iteration 2:   log likelihood = -525.21781 
Iteration 3:   log likelihood =  -525.2178 
Probit regression                                 Number of obs   =        845 
                                                  LR chi2(4)      =      53.61 
                                                  Prob > chi2     =     0.0000 
Log likelihood =  -525.2178                       Pseudo R2       =     0.0486 
 
------------------------------------------------------------------------------ 
   marijuana |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sex |  -.2101429   .0910856    -2.31   0.021    -.3886673   -.0316184 
        educ |   .0229968   .0151532     1.52   0.129     -.006703    .0526965 
         age |  -.0111514   .0029499    -3.78   0.000    -.0169331   -.0053696 
      childs |  -.0984716   .0314167    -3.13   0.002    -.1600472    -.036896 
       _cons |   .3374219   .2782445     1.21   0.225    -.2079273    .8827711 
------------------------------------------------------------------------------ 
 

Goodness of fit 
 
. estat gof 
Logistic model for marijuana, goodness-of-fit test 
       number of observations =       845 
 number of covariate patterns =       748 
            Pearson chi2(743) =       748.27 
                  Prob > chi2 =         0.4389 
 
The high p-value indicates that model fits well (there is no significant 
discrepancy between observed and predicted frequencies).  But: this is a chi-
square test that compares observed and predicted outcomes in cells defined by 
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covariate patterns – all possible combinations of independent variables.  In 
this case, there are 770 covariate patterns, so it 770 cells for chi-square 
test, and therefore very few cases per cell.  Not a good situation for a chi-
square test.   
 
Hosmer and Lemeshow suggested an alternative measure that solves the problem of 
too many covariate patterns.  Rather than compare the observed and predicted 
frequencies in each covariate pattern, they divide the data into ten cells by 
sorting it according to the predicted probabilities and breaking it into deciles 
(i.e. the 10% of observations with lowest predicted probabilities form the first 
group, then next 10% the next group, etc.).  This measure of goodness of fit is 
usually preferred over the Pearson chi-square.  Here’s how we obtain it: 
 
. estat gof, group(10) 
Logistic model for marijuana, goodness-of-fit test 
  (Table collapsed on quantiles of estimated probabilities) 
       number of observations =       845 
             number of groups =        10 
      Hosmer-Lemeshow chi2(8) =        10.55 
                  Prob > chi2 =         0.2287 
 
Again, the model appears to fit well. If it were not, we could rely on various 
diagnostics (discussed below) to improve model fit.  
 
Other measures of fit can be obtained using fitstat.  But first, we need to 
install it, along with other commands written by Scott Long, the author of our 
textbook: 
 
. net search spost 
[output omitted] 
We need spostado from http://www.indiana.edu/~jslsoc/stata 
 
Now let’s obtain fit statistics for our last model 
. fitstat, save 
Measures of Fit for logit of marijuana 
Log-Lik Intercept Only:       -552.023   Log-Lik Full Model:           -524.848 
D(840):                       1049.697   LR(4):                          54.350 
                                         Prob > LR:                       0.000 
McFadden's R2:                   0.049   McFadden's Adj R2:               0.040 
ML (Cox-Snell) R2:               0.062   Cragg-Uhler(Nagelkerke) R2:      0.085 
McKelvey & Zavoina's R2:         0.090   Efron's R2:                      0.065 
Variance of y*:                  3.615   Variance of error:               3.290 
Count R2:                        0.669   Adj Count R2:                    0.079 
AIC:                             1.254   AIC*n:                        1059.697 
BIC:                         -4611.346   BIC':                          -27.392 
BIC used by Stata:            1083.394   AIC used by Stata:            1059.697 
 
See pp. 104-113 of Long and Freese for details on these measures of fit. 
McFadden’s R2 is what’s commonly reported as Pseudo-R2, although that tends to 
be fairly low.  
 
Log likelihood value or deviance (-2LL) are also frequently reported. Examining 
the ratio of D/df to see how far from 1.0 it is gives us an idea of model fit 
(here: 1049.697/840=1.2496393).  
 
Another very useful measure is BIC – based on the differences in BIC between 
models, we can select a model with a better fit more reliably than based on a 
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difference in Pseudo-R2 or even based on lrtest. Here’s how we compare model fit 
using fitstat.  We already saved the results of the previous model.  Let’s say, 
we consider adding the marital status dummies:  
. xi: logit marijuana sex age educ childs i.marital 
i.marital         _Imarital_1-5       (naturally coded; _Imarital_1 omitted) 
Logistic regression                               Number of obs   =        845 
                                                  LR chi2(8)      =      74.79 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -514.62716                       Pseudo R2       =     0.0677 
------------------------------------------------------------------------------ 
   marijuana |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sex |  -.3620539   .1532607    -2.36   0.018    -.6624394   -.0616684 
         age |  -.0177167   .0056026    -3.16   0.002    -.0286977   -.0067357 
        educ |    .041343   .0263959     1.57   0.117    -.0103919    .0930779 
      childs |  -.1614819   .0581657    -2.78   0.005    -.2754846   -.0474793 
 _Imarital_2 |   .0118099   .3568915     0.03   0.974    -.6876845    .7113043 
 _Imarital_3 |   .9025573   .2053011     4.40   0.000     .5001746     1.30494 
 _Imarital_4 |   .0300665   .4239309     0.07   0.943    -.8008229    .8609558 
 _Imarital_5 |   .2853992    .208832     1.37   0.172     -.123904    .6947024 
       _cons |   .2573784   .5195598     0.50   0.620    -.7609401    1.275697 
------------------------------------------------------------------------------ 
 
. fitstat, dif 
Measures of Fit for logit of marijuana 
                               Current             Saved        Difference 
Model:                           logit             logit 
N:                                 845               845                 0 
Log-Lik Intercept Only        -552.023          -552.023             0.000 
Log-Lik Full Model            -514.627          -524.848            10.221 
D                             1029.254(836)     1049.697(840)       20.443(4) 
LR                              74.792(8)         54.350(4)         20.443(4) 
Prob > LR                        0.000             0.000             0.000 
McFadden's R2                    0.068             0.049             0.019 
McFadden's Adj R2                0.051             0.040             0.011 
ML (Cox-Snell) R2                0.085             0.062             0.022 
Cragg-Uhler(Nagelkerke) R2       0.116             0.085             0.031 
McKelvey & Zavoina's R2          0.120             0.090             0.030 
Efron's R2                       0.087             0.065             0.023 
Variance of y*                   3.740             3.615             0.125 
Variance of error                3.290             3.290             0.000 
Count R2                         0.673             0.669             0.005 
Adj Count R2                     0.092             0.079             0.013 
AIC                              1.239             1.254            -0.015 
AIC*n                         1047.254          1059.697           -12.443 
BIC                          -4604.831         -4611.346             6.515 
BIC'                           -20.877           -27.392             6.515 
BIC used by Stata             1089.908          1083.394             6.515 
AIC used by Stata             1047.254          1059.697           -12.443 
Difference of    6.515 in BIC' provides strong support for saved model. 
Note: p-value for difference in LR is only valid if models are nested. 
 
This suggests that adding marital status does not add enough to justify adding 4 
extra variables. Again, we could consider adding just one dummy, divorced, and 
that would probably be “worth it” in terms of model fit.  
Here’s how to interpret the difference in BIC (guidelines from Raftery 1995): 
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Note that if the variable you add to the second model changes the number of 
cases (because of missing data), BIC comparison won’t work. E.g., add income:  
. logit marijuana sex age educ childs  rincom98 
Logistic regression                               Number of obs   =        599 
                                                  LR chi2(5)      =      35.29 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -379.82272                       Pseudo R2       =     0.0444 
------------------------------------------------------------------------------ 
   marijuana |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sex |  -.5153134    .181267    -2.84   0.004    -.8705902   -.1600366 
         age |  -.0079214   .0072892    -1.09   0.277    -.0222079    .0063651 
        educ |   .0849509   .0336502     2.52   0.012     .0189976    .1509041 
      childs |  -.2199136   .0676456    -3.25   0.001    -.3524965   -.0873307 
    rincom98 |  -.0352966   .0162986    -2.17   0.030    -.0672413    -.003352 
       _cons |   .3036228   .5639177     0.54   0.590    -.8016357    1.408881 
------------------------------------------------------------------------------ 
 
. fitstat, dif 
Measures of Fit for logit of marijuana 
                               Current             Saved        Difference 
Model:                           logit             logit 
N:                                 599               845              -246 
N's do not match. To make the comparisons, use the force option. 
 
Because our samples are not the same, so it’s problematic to compare models.  Do 
not use force option, however – such a comparison would not be correct. A better 
strategy is to limit both models to the same sample: 
. logit marijuana sex age educ childs if rincom98~=. 
Logistic regression                               Number of obs   =        599 
                                                  LR chi2(4)      =      30.57 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -382.18666                       Pseudo R2       =     0.0385 
------------------------------------------------------------------------------ 
   marijuana |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sex |  -.4295858   .1756775    -2.45   0.014    -.7739073   -.0852643 
         age |  -.0096812   .0072661    -1.33   0.183    -.0239226    .0045601 
        educ |   .0604882   .0312321     1.94   0.053    -.0007257     .121702 
      childs |  -.2182796   .0678493    -3.22   0.001    -.3512617   -.0852974 
       _cons |   .0640233   .5479271     0.12   0.907    -1.009894    1.137941 
------------------------------------------------------------------------------ 
 
. fitstat, save 
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Measures of Fit for logit of marijuana 
Log-Lik Intercept Only:       -397.470   Log-Lik Full Model:           -382.187 
D(594):                        764.373   LR(4):                          30.566 
                                         Prob > LR:                       0.000 
McFadden's R2:                   0.038   McFadden's Adj R2:               0.026 
ML (Cox-Snell) R2:               0.050   Cragg-Uhler(Nagelkerke) R2:      0.068 
McKelvey & Zavoina's R2:         0.069   Efron's R2:                      0.053 
Variance of y*:                  3.534   Variance of error:               3.290 
Count R2:                        0.644   Adj Count R2:                    0.062 
AIC:                             1.293   AIC*n:                         774.373 
BIC:                         -3034.412   BIC':                           -4.985 
BIC used by Stata:             796.350   AIC used by Stata:             774.373 
 
. logit marijuana sex age educ childs rincom98 
Logistic regression                               Number of obs   =        599 
                                                  LR chi2(5)      =      35.29 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -379.82272                       Pseudo R2       =     0.0444 
----------------------------------------------------------------------------- 
   marijuana |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sex |  -.5153134    .181267    -2.84   0.004    -.8705902   -.1600366 
         age |  -.0079214   .0072892    -1.09   0.277    -.0222079    .0063651 
        educ |   .0849509   .0336502     2.52   0.012     .0189976    .1509041 
      childs |  -.2199136   .0676456    -3.25   0.001    -.3524965   -.0873307 
    rincom98 |  -.0352966   .0162986    -2.17   0.030    -.0672413    -.003352 
       _cons |   .3036228   .5639177     0.54   0.590    -.8016357    1.408881 
------------------------------------------------------------------------------ 
. fitstat, dif 
Measures of Fit for logit of marijuana 
                               Current             Saved        Difference 
Model:                           logit             logit 
N:                                 599               599                 0 
Log-Lik Intercept Only        -397.470          -397.470             0.000 
Log-Lik Full Model            -379.823          -382.187             2.364 
D                              759.645(593)      764.373(594)        4.728(1) 
LR                              35.294(5)         30.566(4)          4.728(1) 
Prob > LR                        0.000             0.000             0.030 
McFadden's R2                    0.044             0.038             0.006 
McFadden's Adj R2                0.029             0.026             0.003 
ML (Cox-Snell) R2                0.057             0.050             0.007 
Cragg-Uhler(Nagelkerke) R2       0.078             0.068             0.010 
McKelvey & Zavoina's R2          0.078             0.069             0.009 
Efron's R2                       0.060             0.053             0.008 
Variance of y*                   3.569             3.534             0.035 
Variance of error                3.290             3.290             0.000 
Count R2                         0.658             0.644             0.013 
Adj Count R2                     0.097             0.062             0.035 
AIC                              1.288             1.293            -0.005 
AIC*n                          771.645           774.373            -2.728 
BIC                          -3032.745         -3034.412             1.667 
BIC'                            -3.317            -4.985             1.667 
BIC used by Stata              798.017           796.350             1.667 
AIC used by Stata              771.645           774.373            -2.728 
Difference of    1.667 in BIC' provides weak support for saved model. 
Note: p-value for difference in LR is only valid if models are nested. 
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It looks like based on BIC we wouldn’t add income to the model. Another way to 
assess model fit is to concentrate on its predictive powers.  This is especially 
important when we plan to use the model for prediction (e.g., we want to predict 
who would support legalization of marijuana for a sample that does not contain 
those data but contains all our independent variables).  One way to assess 
predictive power is to look at prediction statistics: 
 
. qui logit marijuana sex age educ childs 
[output omitted] 
. estat clas 
Logistic model for marijuana 
              -------- True -------- 
Classified |         D            ~D  |      Total 
-----------+--------------------------+----------- 
     +     |        72            48  |        120 
     -     |       232           493  |        725 
-----------+--------------------------+----------- 
   Total   |       304           541  |        845 
Classified + if predicted Pr(D) >= .5 
True D defined as marijuana != 0 
-------------------------------------------------- 
Sensitivity                     Pr( +| D)   23.68% 
Specificity                     Pr( -|~D)   91.13% 
Positive predictive value       Pr( D| +)   60.00% 
Negative predictive value       Pr(~D| -)   68.00% 
-------------------------------------------------- 
False + rate for true ~D        Pr( +|~D)    8.87% 
False - rate for true D         Pr( -| D)   76.32% 
False + rate for classified +   Pr(~D| +)   40.00% 
False - rate for classified -   Pr( D| -)   32.00% 
-------------------------------------------------- 
Correctly classified                        66.86% 
 
We can see that our model classified correctly 66.86% of cases.  Note that it 
only classified 120 people out of 845 as supporters of marijuana legalization.  
The four cells in the table indicate how classification by the model compares to 
true status of each case.  The statistics below reflect the percentage from the 
table above and indicate predictive success rates and rates of errors. 
Sensitivity indicates the percentage of cases with Y=1 that we identified 
correctly, and specificity indicates the percentages of cases with Y=0 that we 
classified correctly.  We can see that our sensitivity is 23.68 but our 
specificity is much higher (91.13%).  To alter that for a given model, we can 
change the cutoff point.  In this table, the cutoff is 0.5 – this means that all 
observations with predicted probabilities of .5 and above get classified as 1 
(i.e. supporters of legalization) and those observations with predicted 
probabilities below .5 are classified as 0 (against legalization).  It appears 
that most cases have predicted probabilities below .5.  Let’s try to shift that 
cutoff to .3: 
. estat clas, cutoff(.3) 
Logistic model for marijuana 
              -------- True -------- 
Classified |         D            ~D  |      Total 
-----------+--------------------------+----------- 
     +     |       242           329  |        571 
     -     |        62           212  |        274 
-----------+--------------------------+----------- 
   Total   |       304           541  |        845 
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Classified + if predicted Pr(D) >= .3 
True D defined as marijuana != 0 
-------------------------------------------------- 
Sensitivity                     Pr( +| D)   79.61% 
Specificity                     Pr( -|~D)   39.19% 
Positive predictive value       Pr( D| +)   42.38% 
Negative predictive value       Pr(~D| -)   77.37% 
-------------------------------------------------- 
False + rate for true ~D        Pr( +|~D)   60.81% 
False - rate for true D         Pr( -| D)   20.39% 
False + rate for classified +   Pr(~D| +)   57.62% 
False - rate for classified -   Pr( D| -)   22.63% 
-------------------------------------------------- 
Correctly classified                        53.73% 
-------------------------------------------------- 
 
Now our sensitivity and specificity are more balanced. We can further examine 
them and then select a cutoff point using the following command that graphs them 
against each other: 
. lsens 
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Looks like the cutoff point of .4 would be close to the point where specificity 
and sensitivity are equal.  But, the selection of the cutoff will depend on 
what’s more important to us – correctly identify 0s or 1s, and what type of 
error is more problematic to us – this will depend in the task at hand.   
 

Diagnostics for binary logit 
 
Before conducting logistic regression, it might be a good idea to check 
univariate distributions of independent variables and if some deviate 
substantially from normal and you can easily correct that with a transformation, 
then try those transformations. Although normality is not required, it may help 
avoid other problems. Obviously, this does not apply to your dependent variable.  
Also note that in logistic regression, we do not expect residuals to be normally 
distributed.  
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Further, before conducting multivariate analysis, you should also check the 
linearity of bivariate relationships (see below). 
 
1. Multicollinearity 
 
For multicollinearity, we can again use VIFs.  But to obtain them, we need to 
run a regular OLS regression model with the same variables and then obtain VIFs 
– VIF command doesn’t function after logit regression, even though VIF 
statistics don’t depend on the dependent variable but rather on the correlations 
among the independent ones. So here’s what we’d do: 
. qui reg marijuana sex age educ childs  _Imarital_3 
. vif 
 
    Variable |       VIF       1/VIF   
-------------+---------------------- 
      childs |      1.25    0.800429 
         age |      1.21    0.823595 
        educ |      1.04    0.959260 
         sex |      1.01    0.985564 
 _Imarital_3 |      1.01    0.989556 
-------------+---------------------- 
    Mean VIF |      1.11 
 
2. Linearity 
 
In logistic regression, linearity and additivity in logits is expected (i.e. the 
relationships are nonlinear, but they should be linear in terms of the log 
odds).  Bivariate graphical examination using lowess helps identify problems: 
 
.lowess marijuana age 
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Note that we should not expect a straight line – after all, probability curve is 
not a straight line. But this can help you spot, for instance, a parabola.  
 
In multivariate context, you can use boxtid--don’t forget to specify that you 
are using logit rather then reg when using boxtid, i.e. use: 
. boxtid logit marijuana sex age educ childs 
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3. Additivity 
You can once again use fitint command to search for interactions; the syntax is  
. fitint logit marijuana sex age educ childs, twoway(sex age educ childs) 
factor(sex) 
 
Note that interactions as a method to compare two or more groups can be 
problematic in logit or probit models because the coefficients are scaled 
according to the differences in residual dispersion. If you are interested in 
group comparisons, see: 
Allison, Paul D. 1999. “Comparing Logit and Probit Coefficients Across Groups.” 
Sociological Methods and Research, 28: 186-208. 
Hoetker, Glenn. 2004. “Confounded Coefficients: Extending Recent Advances in the 
Accurate Comparison of Logit and Probit Coefficients Across Groups.” 
http://www.business.uiuc.edu/Working_Papers/papers/03-0100.pdf  
Long, Scott. 2006. Comparing Group Effects in Logit and Probit Models. 
http://www.umass.edu/family/conference/Long.htm  
 
4. Outliers and influential data points 
 
To detect influential observations and outliers, there are a few statistics you 
can obtain using predict command after logit 
 
p            predicted probability of a positive outcome; the default 
xb           linear prediction 
stdp         standard error of the linear prediction 
dbeta        Pregibon (1981) Delta-Beta influence statistic 
deviance     deviance residual 
dx2          Hosmer and Lemeshow (2000) Delta chi-squared infl. stat. 
ddeviance    Hosmer and Lemeshow (2000) Delta-D influence statistic 
hat          Pregibon (1981) leverage 
number       sequential number of the covariate pattern 
residuals    Pearson residual (adj. for # sharing covariate pattern) 
rstandard    standardized Pearson residual (adj. for # sharing covariate 
pattern) 
 
To examine residuals, it is recommended to use standardized Pearson residual 
that accounts for in-built heteroscedasticity of residuals in the logit model.   
 
. logit marijuana sex age educ childs 
[Output omitted] 
 
. predict rstandard, rs 
(1920 missing values generated) 
 
We can plot residuals against the predicted values and examine observations with 
residuals high in absolute value: 
 
. predict prob 
(option p assumed; Pr(marijuana)) 
(25 missing values generated) 
 
. scatter prob rstandard, xline(0) mlabel(id) 
 



 11

1438 26912400 178019621861 17293211504 12372077 1739188614432090 25811012160 34927321253 9652694728 2277 8871503 5462310409 977105417 12031708 338628920657 27431291879 47 9991000250 14612761 12042033145616362541242705 1826472075387 14162498221918901301384 195921447 406273 14325582032304 1602 15881404 25722182649 11981852 16892678 233513433881627 1493 734153313 11492324 256333 18071927 153722122399422 41344116041838521231915 13689812641 10161597 158718623481323 7352226 14195291295 1937 26793811322 34414132591 873262623922541084 245524092 13262826972526 17972267 18858672656198423552229112713512343 2668325 23501378208191323442724 15171920466 15181319 33442720891749 16064361427 201044922642449 17122271 6712028 9985175062623 18911690106120942004 2172536229413292080 1162394 19431034 4881104 80626711810202583512441670 341015331131 22721695 7821483550203815908641492578 1583 18025271328811 4377141289 968176 76916512629969102115231032 22682606511 2393 10565541791 105882714522718483 24441506322 209691819260 2203200 32017131076 32724942428159 500512 15422298 1798142613692200 92959541838 2584133436619533542505 6132487 1479912923 595 13632142 251082224 10312643 2765452151526449561395261995 13982372170 2194749 171524422703 6696959721682453 6549721872 19926885881306821 15742686 84017322278 12671531883 614190062521051333 1162687 131516032707 2139700296 1035127812852685 25451045 253710851026 58055723261236 5317702057 2553812 1103165341622621180848752122 22812414265112171786 15702152248069428816812683271020001074257714601362314 7098162127 177718027572283 14881090 175862856 18061594937 17071384 12773734791112 1241106620471938 13811534 16801873 23884731609 934122320051191 12312009 651136575320019001062 18793408221507 1073217616852046112123841391567 892569 1196140715522472605537 1790276817 2082423 19639872405 15009902109 177118488381358 275126972287913461307 2159309 9306651373154 2167 189520672104 24842156108925421844 2320161419592539 10431232235116722312652 1563 143925302111 1608 91030422431562200821901527 1435931535103923312186 252201543126 15711158678193544518451615834 129949454959410258092261133811551188175725991834 1649522166814 2728521478 2288273860077717762410201810926822462506218328016518352473 231415532138 75527471359590 151439515607601007 86111306736035641822 5911497 2249622 6426321975 61814652736872 963903243263725931098450121907 14722137891390118565 662 95749214732173 2657895845 4702041257457721512014 454318 17534822532128744 3925532660 1814105011077571002 991 902159813851356 67207021342907722817651622130 171914013521249 7257 316204227347971660 69213422639246319911881520 2232021943 194920731578796 7322476 6212635 10422235197218391960166511811451229263224831569759 3521931489 19882257 794116826401403155559 1095661 185114266420852531 2362305164215511631646219917642429236523592330539682101017737431904206226142163 267394921626411259242222 766218925871268

713

1294

2339

2242

1345

1396

1661

129
94

2034

696

267

243

636

2563

1979

1079

2204

1829

2143

2213

790

1857

472

363

1612

85

927

2236

565502944

786
169

2179

1510

686

2621

2716
2061

195

2527

2027

1053

2450

1654

64

1813

2411658

521

1967

1911

1671

1566

1399

1642
111

1994
231805

1468

2552

1998

1281

2053

1530

1980

341

2675

1423

2739

2556
2466

433

37
398

2367

2690

1748

2502

2693
710853

2605
2522

1020

801

2648532

432329
2130

2495

1740
2389
1723

0
.2

.4
.6

.8
P

r(m
ar

iju
an

a)

-2 0 2 4
standardized Pearson residual

 
Observations on the far left or far right deserve further examination.  Here, we 
would especially look at 766 and 2189, but also 2673. 
 
To identify influential observations, we can obtain a number of leverage 
statistics: 
. predict dbeta, dbeta 
(1920 missing values generated) 
. predict hat, hat 
(1920 missing values generated) 
. predict dx2, dx2 
(1920 missing values generated) 
 
We can then examine these graphically to identify problematic observations: 
. scatter dbeta prob, mlabel(id) 
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Observations 766, 2189 stand out again as the ones with highest values of dbeta 
Can similarly examine dx2 and hat values 
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We can also combine the information about multiple leverage statistics in one 
plot: 
. scatter dbeta rs [w=dx2], mfc(white) xline(0) 
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Again those two observations (we can verify that they are the same ones by using 
mlabel option).  These observations definitely warrant investigation – we need 
to figure out what’s special about them and then decide how to deal with them. 
 
5. Error term distribution 
 
In terms of the error term distribution, we don’t check for it directly (like 
with heteroscedasticity test in OLS).  There is in-built heteroscedasticity in 
logit models – the variance of the error term is the greatest at the predicted 
probabilities around .5 and the smallest as we approach 0 or 1.  But we still 
should be concerned whether the logit assumptions about the variance of the 
error term are correct.  To test that, we can obtain robust standard error 
estimates and compare them with the regular standard error estimates. If they 
are similar, then our logistic results are fine.  If they differ a lot, however, 
we would rather report robust standard errors as they do are correct even in the 
presence of assumptions violation.  
 
. logit marijuana sex age educ childs 
Logistic regression                               Number of obs   =        845 
                                                  LR chi2(4)      =      54.35 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -524.84843                       Pseudo R2       =     0.0492 
------------------------------------------------------------------------------ 
   marijuana |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sex |    -.34799   .1494796    -2.33   0.020    -.6409647   -.0550152 
         age |  -.0183109   .0049147    -3.73   0.000    -.0279436   -.0086782 
        educ |   .0401891    .025553     1.57   0.116     -.009894    .0902722 
      childs |  -.1696747   .0536737    -3.16   0.002    -.2748733   -.0644762 
       _cons |   .5412516   .4595609     1.18   0.239    -.3594713    1.441974 
------------------------------------------------------------------------------ 
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. logit marijuana sex age educ childs, robust 
Logistic regression                               Number of obs   =        845 
                                                  Wald chi2(4)    =      44.52 
                                                  Prob > chi2     =     0.0000 
Log pseudolikelihood = -524.84843                 Pseudo R2       =     0.0492 
------------------------------------------------------------------------------ 
             |               Robust 
   marijuana |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sex |    -.34799    .149609    -2.33   0.020    -.6412182   -.0547617 
         age |  -.0183109   .0048417    -3.78   0.000    -.0278003   -.0088214 
        educ |   .0401891   .0269052     1.49   0.135    -.0125441    .0929223 
      childs |  -.1696747   .0566388    -3.00   0.003    -.2806846   -.0586648 
       _cons |   .5412516   .4677331     1.16   0.247    -.3754884    1.457992 
------------------------------------------------------------------------------ 
The two sets of standard errors look the same – no violation of assumptions 
about error distribution. 
 
6. Overdispersion 
In logistic regression, the expected variance of the dependent variable can be 
compared to the observed variance, and discrepancies may be considered under- or 
overdispersion. If there is substantial discrepancy, standard errors will be 
over-optimistic. The expected variance is ybar*(1 - ybar), where ybar is the 
mean of the fitted values. This can be compared with the actual variance in 
observed DV to assess under- or overdispersion. We can see the extent of 
overdispersion by examining the ratio of D/df (where D is the deviance (-2LL) 
and df=N-k) -- given that we eliminated other reasons for deviance to be large 
(e.g., outliers, nonlinearities, other model specification errors like omitted 
variables). In the fitstat output, we find D(df=840) is 1049.697. The ratio is  
. di 1049.697/840 
1.2496393 
The ratio is close enough to 1 for us not to worry. If there is overdispersion 
(which is much more common than underdispersion), we can use adjusted standard 
errors. Adjusted standard errors will make the confidence intervals wider. 
Adjusted SE equals SE * sqrt(D/df), where D is the deviance (-2LL) and df=N-k. 
However, typically overdispersion reflects the fact that we need to respecify 
the model (i.e. we omitted an important variable), or that our observations are 
not independent – i.e., data over time or clusters of observations. We’ll 
discuss methods to deal with clusters of observation later in the course.  

 
Binary Logit Interpretation 

 
As logistic regression models (whether binary, ordered, or multinomial) are 
nonlinear, they pose a challenge for interpretation. The increase in the 
dependent variable in a linear model is constant for all values of X.  Not so 
for logit models – probability increases or decreases per unit change in X is 
nonconstant, as illustrated in this picture. 
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When interpreting logit regression coefficients, we can interpret only the sign 
and significance of the coefficients – cannot interpret the size.  The following 
picture can give you an idea how the shape of the curve varies depending on the 
size of the coefficient, however.  Note that, similarly to OLS regression, the 
constant determines the position of the curve along the X axis and the 
coefficient (beta) determines the slope. 
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Next, we’ll examine various ways to interpret logistic regression results.   
 
1. Coefficients and Odds Ratios 
We’ll use another model, focusing now on the probability of voting. 
. codebook vote00 
-------------------------------------------------------------------------------- 
vote00                                                                                      
did r vote in 2000 election 
-------------------------------------------------------------------------------- 
                  type:  numeric (byte) 
                 label:  vote00 
 
                 range:  [1,4]                        units:  1 
         unique values:  4                        missing .:  14/2765 
 
            tabulation:  Freq.   Numeric  Label 
                          1780         1  voted 
                           822         2  did not vote 
                           138         3  ineligible 
                            11         4  refused to answer 
                            14         .   
 
. gen vote=(vote00==1) if vote00<3 
(163 missing values generated) 
. gen married=(marital==1) 
 
. logit vote age sex born married childs educ 
Iteration 0:   log likelihood = -1616.8899 
Iteration 1:   log likelihood = -1365.9814 
Iteration 2:   log likelihood = -1353.4091 
Iteration 3:   log likelihood = -1353.2224 
Iteration 4:   log likelihood = -1353.2224 
Logistic regression                               Number of obs   =       2590 
                                                  LR chi2(6)      =     527.33 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -1353.2224                       Pseudo R2       =     0.1631 
------------------------------------------------------------------------------ 
        vote |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   .0466321    .003337    13.97   0.000     .0400917    .0531726 
         sex |   .1094233     .09552     1.15   0.252    -.0777924     .296639 
        born |  -.9673683   .1859278    -5.20   0.000     -1.33178   -.6029564 
     married |   .4911099   .0983711     4.99   0.000     .2983062    .6839136 
      childs |  -.0391447   .0327343    -1.20   0.232    -.1033028    .0250133 
        educ |   .2862839   .0197681    14.48   0.000     .2475391    .3250287 
       _cons |  -4.352327   .3892601   -11.18   0.000    -5.115263   -3.589391 
------------------------------------------------------------------------------ 
These are regular logit coefficients; so we can interpret the sign and 
significance but not the size of effects.  So we can say that age increases the 
probability of voting but we can’t say by how much – that’s because a 1 year 
increase in age will not affect the probability the same way for a 30 year old 
and for a 40 year old.   
 
To be able to interpret effect size, we turn to odds ratios. Note that odds 
ratios are only appropriate for logistic regression – they don’t work for probit 
models.  
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Odds are ratios of two probabilities – probability of a positive outcome and a 
probability of a negative outcome (e.g. probability of voting divided by a 
probability of not voting).  But since probabilities vary depending on values of 
X, such a ratio varies as well. What remains constant is the ratio of such odds 
– e.g. odds of voting for women divided by odds of voting for men will be the 
same number regardless of the values of other variables.  Similarly, the odds 
ratio for age can be a ratio of the odds of voting for someone who is 31 y.o. to 
the odds of a 30 y.o. person, or of a 41 y.o. to a 40 y.o. person’s odds – these 
will be the same regardless of what age values you pick, as long as they are one 
year apart. So let’s examine the odds ratios. 
 
. logit vote age sex born married childs educ, or 
Iteration 0:   log likelihood = -1616.8899 
Iteration 1:   log likelihood = -1365.9814 
Iteration 2:   log likelihood = -1353.4091 
Iteration 3:   log likelihood = -1353.2224 
Iteration 4:   log likelihood = -1353.2224 
Logistic regression                               Number of obs   =       2590 
                                                  LR chi2(6)      =     527.33 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -1353.2224                       Pseudo R2       =     0.1631 
------------------------------------------------------------------------------ 
        vote | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   1.047736   .0034963    13.97   0.000     1.040906    1.054612 
         sex |   1.115634   .1065654     1.15   0.252     .9251564     1.34533 
        born |    .380082   .0706678    -5.20   0.000     .2640069    .5471915 
     married |   1.634129    .160751     4.99   0.000     1.347574    1.981618 
      childs |   .9616115   .0314777    -1.20   0.232     .9018538    1.025329 
        educ |    1.33147   .0263207    14.48   0.000     1.280869     1.38407 
------------------------------------------------------------------------------ 
Another way to obtain odds ratios would be to use “logistic” command instead of 
“logit” – it automatically displays odds ratios instead of coefficients.  But 
yet another, more convenient way is to use listcoef command (that’s one of the 
commands written by Scott Long that we downloaded as a part of spost package): 
 
. listcoef 
logit (N=2590): Factor Change in Odds  
  Odds of: 1 vs 0 
---------------------------------------------------------------------- 
        vote |      b         z     P>|z|    e^b    e^bStdX      SDofX 
-------------+-------------------------------------------------------- 
         age |   0.04663   13.974   0.000   1.0477   2.2297    17.1953 
         sex |   0.10942    1.146   0.252   1.1156   1.0559     0.4972 
        born |  -0.96737   -5.203   0.000   0.3801   0.7885     0.2457 
     married |   0.49111    4.992   0.000   1.6341   1.2777     0.4990 
      childs |  -0.03914   -1.196   0.232   0.9616   0.9365     1.6762 
        educ |   0.28628   14.482   0.000   1.3315   2.3108     2.9257 
---------------------------------------------------------------------- 
The advantage of listcoef is that it reports regular coefficients, odds ratios, 
and standardized odds ratios in one table.   
 
Odds ratios are exponentiated logistic regression coefficients. They are 
sometimes called factor coefficients, because they are multiplicative 
coefficients.  Odds ratios are equal to 1 if there is no effect, smaller than 1 
if the effect is negative and larger than 1 if it is positive.  So for example, 
the odds ratio for married indicates that the odds of voting for those who are 
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married are 1.63 times higher than for those who are not married. And the odds 
ratio for education indicates that each additional year of education makes one’s 
odds of voting 1.33 times higher -- or, in other words, increases those odds by 
33%.  To get percent change directly, we can use percent option:   
 
. listcoef, percent 
logit (N=2590): Percentage Change in Odds  
  Odds of: 1 vs 0 
---------------------------------------------------------------------- 
        vote |      b         z     P>|z|      %      %StdX      SDofX 
-------------+-------------------------------------------------------- 
         age |   0.04663   13.974   0.000      4.8    123.0    17.1953 
         sex |   0.10942    1.146   0.252     11.6      5.6     0.4972 
        born |  -0.96737   -5.203   0.000    -62.0    -21.2     0.2457 
     married |   0.49111    4.992   0.000     63.4     27.8     0.4990 
      childs |  -0.03914   -1.196   0.232     -3.8     -6.4     1.6762 
        educ |   0.28628   14.482   0.000     33.1    131.1     2.9257 
---------------------------------------------------------------------- 
Beware: if you would like to know what the increase would be per, say, 10 units 
increase in the independent variable – e.g. 10 years of education, you cannot 
simply multiple the odds ratio by 10! The coefficient, in fact, would be odds 
ratio to the power of 10.  Or alternatively, you could take the regular logit 
coefficient, multiply it by 10 and then exponentiate it -- e.g. for education: 
. di exp(0.28628*10) 
17.510488 
. di 1.3315^10 
17.515063 
 
Standardized odds ratios (presented under e^bStdX) are similar to regular odds 
ratios, but they display the change in the odds of voting per one standard 
deviation change in the independent variable.  The last column in the table 
generated by listcoef shows what one standard deviation for each variable is.  
So for age the standardized odds ratio indicates that 17 years of age increase 
one’s odds of voting 2.23 times, or by 123%.  Standardized odds ratios, like 
standardized coefficients in OLS, allow us to compare effect sizes across 
variables regardless of their measurement units.  But, beware of comparing 
negative and positive effects – odds ratios of 1.5 and .5 are not equivalent, 
even though the first one represents a 50% increase in odds and the second one 
represents a 50% decrease. This is because odds ratios cannot be below zero 
(there cannot be a decrease more than 100%), but they do not have an upper bound 
– i.e. can be infinitely high.  In order to be able to compare positive and 
negative effects, we can reverse odds ratios and generate odds ratios for odds 
of not voting (rather than odds of voting).  
. listcoef, reverse 
logit (N=2590): Factor Change in Odds  
  Odds of: 0 vs 1 
---------------------------------------------------------------------- 
        vote |      b         z     P>|z|    e^b    e^bStdX      SDofX 
-------------+-------------------------------------------------------- 
         age |   0.04663   13.974   0.000   0.9544   0.4485    17.1953 
         sex |   0.10942    1.146   0.252   0.8964   0.9470     0.4972 
        born |  -0.96737   -5.203   0.000   2.6310   1.2682     0.2457 
     married |   0.49111    4.992   0.000   0.6119   0.7826     0.4990 
      childs |  -0.03914   -1.196   0.232   1.0399   1.0678     1.6762 
        educ |   0.28628   14.482   0.000   0.7510   0.4328     2.9257 
We can see for example that the odds ratio of 0.3801 for born is a negative 
effect corresponding in size to a positive odds ratio of 2.6310.    
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Listcoef also has a help option that explains what’s what in the table: 
 
. listcoef, reverse help 
logit (N=2590): Factor Change in Odds  
  Odds of: 0 vs 1 
---------------------------------------------------------------------- 
        vote |      b         z     P>|z|    e^b    e^bStdX      SDofX 
-------------+-------------------------------------------------------- 
         age |   0.04663   13.974   0.000   0.9544   0.4485    17.1953 
         sex |   0.10942    1.146   0.252   0.8964   0.9470     0.4972 
        born |  -0.96737   -5.203   0.000   2.6310   1.2682     0.2457 
     married |   0.49111    4.992   0.000   0.6119   0.7826     0.4990 
      childs |  -0.03914   -1.196   0.232   1.0399   1.0678     1.6762 
        educ |   0.28628   14.482   0.000   0.7510   0.4328     2.9257 
---------------------------------------------------------------------- 
       b = raw coefficient 
       z = z-score for test of b=0 
   P>|z| = p-value for z-test 
     e^b = exp(b) = factor change in odds for unit increase in X 
 e^bStdX = exp(b*SD of X) = change in odds for SD increase in X 
   SDofX = standard deviation of X 
 
2. Predicted Probabilities 
In addition to regular coefficients and odds ratios, we also should examine 
predicted probabilities – both for the actual observations in our data and for 
strategically selected hypothetical cases. Predicted probabilities are always 
calculated for a specific set of independent variables’ values.  One thing we 
can calculate is predicted probabilities for the actual data that we have – for 
each case, we take the values of all independent variables and plug it into the 
equation: 
 
. predict prob 
(option p assumed; Pr(vote)) 
(26 missing values generated) 
 
. sum prob if e(sample) 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
        prob |      2590    .6833977     .204702   .0205784   .9926677 
 
Mean of predicted probabilities represents the average proportion in the sample: 
 
. sum vote if e(sample) 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
        vote |      2590    .6833977    .4652406          0          1 
 
These are predicted probabilities for the actual cases in our dataset.  It can 
be useful, however, to calculate predicted probabilities for hypothetical sets 
of values – some interesting combinations that we could compare and contrast. 
 
. prvalue 
logit: Predictions for vote 
Confidence intervals by delta method 
                                95% Conf. Interval 
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  Pr(y=1|x):          0.7249   [ 0.7052,    0.7446] 
  Pr(y=0|x):          0.2751   [ 0.2554,    0.2948] 
          age        sex       born    married     childs       educ 
x=  46.935907  1.5532819  1.0644788  .46756757  1.8389961  13.394595 
 
This calculates a predicted probability for a case with all values set at the 
mean.  So an “average” person has 72.5% chance of voting.  We can also see what 
these averages are.  Clearly, for some variables they don’t make sense – we 
don’t want to use averages for dummy variables; rather, we’d want to specify 
what values to use.  Here are some examples of specifying values: 
. prvalue, x(age=30 born=1 sex=2 married=0) 
logit: Predictions for vote 
Confidence intervals by delta method 
                                95% Conf. Interval 
  Pr(y=1|x):          0.5152   [ 0.4722,    0.5582] 
  Pr(y=0|x):          0.4848   [ 0.4418,    0.5278] 
          age        sex       born    married     childs       educ 
x=         30          2          1          0  1.8389961  13.394595 
 
This is the predicted value for someone who is 30, native born, female, and 
unmarried (and has average number of children and average education).  
 
Note that if you have a set of dummy variables, you should always specify values 
for each of them in prvalue command. E.g. if we were using 4 marital status 
dummies, we’d have to specify all of them, otherwise, some of them will be 
assigned their mean values and your calculation will be unrealistic. 
 
. xi: qui logit vote age sex born i.marital childs educ 
. prvalue, x( _Imarital_2=1  _Imarital_3=0  _Imarital_4=0  _Imarital_5=0) 
logit: Predictions for vote 
Confidence intervals by delta method 
                                95% Conf. Interval 
  Pr(y=1|x):          0.6736   [ 0.5908,    0.7565] 
  Pr(y=0|x):          0.3264   [ 0.2435,    0.4092] 
      age          sex         born        _Imarital_2  _Imarital_3  _Imarital_4           
_Imarital_5   childs   educ 
x=    46.935907    1.5532819    1.0644788            1            0            0            
0    1.8389961    13.394595 
Note: to get the predicted probability for the omitted category, we need to 
specify all zeros.  
 
We can also use prtab to obtain values of predicted probabilities for various 
combinations of categorical variables – we can select one variable at a time or 
up to four variables in this command – but note that we need to specify what 
values to use for all other variables – e.g. in this case, all other variables 
are set at the mean. 
 
. qui logit vote age sex born married childs educ 
. prtab born married, rest(mean) 
logit: Predicted probabilities of positive outcome for vote 
-------------------------- 
was r     | 
born in   | 
this      |    married     
country   |      0       1 
----------+--------------- 
      yes | 0.6903  0.7846 
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       no | 0.4587  0.5806 
-------------------------- 
          age        sex       born    married     childs       educ 
x=  46.935907  1.5532819  1.0644788  .46756757  1.8389961  13.394595 
 
This allows us to see that the effect of one variable depends on the level of 
the other – for native born individuals, marriage increases chances of voting by 
9.5%, but for the foreign born, marriage increases these chances by 12.2%. 
 
And we can use conditions: 
. prtab childs born if married ==1 
logit: Predicted probabilities of positive outcome for vote 
------------------------------ 
              | was r born in  
number of     |  this country  
children      |    yes      no 
--------------+--------------- 
         none | 0.8153  0.6265 
          one | 0.8093  0.6173 
          two | 0.8032  0.6080 
        three | 0.7969  0.5987 
         four | 0.7905  0.5892 
         five | 0.7840  0.5797 
          six | 0.7773  0.5702 
        seven | 0.7704  0.5605 
eight or more | 0.7634  0.5509 
------------------------------ 
          age        sex       born    married     childs       educ 
x=  48.010735  1.5111478  1.0817506          1  2.1965318  13.654831 
 
But note that the means used in this case are the means for the subgroup 
specified by these conditions (in this case, for the married). If you want to 
use the means for the whole sample, you’d have to specify them using x option: 
. prtab childs born if married ==1, x(age=46.935907 sex=1.5532819 educ= 
13.394595) 
logit: Predicted probabilities of positive outcome for vote 
------------------------------ 
              | was r born in  
number of     |  this country  
children      |    yes      no 
--------------+--------------- 
         none | 0.7965  0.5981 
          one | 0.7901  0.5886 
          two | 0.7835  0.5791 
        three | 0.7768  0.5695 
         four | 0.7700  0.5599 
         five | 0.7630  0.5502 
          six | 0.7558  0.5405 
        seven | 0.7485  0.5308 
eight or more | 0.7411  0.5210 
------------------------------ 
          age        sex       born    married     childs       educ 
x=  46.935907  1.5532819  1.0817506          1  2.1965318  13.394595 
 
Note that it only makes sense to create such tables of predicted probabilities 
for variables that have significant effects – otherwise, you’ll see no 
differences. And if you have sets of dummy variables, you are better off using 
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prvalue to obtain your predicted values (see above); prtab can be quite 
confusing for such cases.  
 
Further, we can use prgen to generate new variables containing probabilities for 
certain sets of values.  This is useful with continuous variables, as it allows 
us to see how predicted probability changes across values of one variable (given 
that the rest of them are set at some specific values).  
 
In the following example, we generate predicted values for 7 different ages -- 
20, 80, and 5 more points in between.  We generate these for four groups defined 
by education (10, 12, 16, 20).  The rest of the variables are set at mean.  
We’ll add labels to the new variables containing predicted probabilities.  
 
. for num 10 12 16 20: prgen age, from (20) to (80) gen(preducX) x(educ=X) 
rest(mean) n(7) \ lab var preducXp1 "education=X" 
 
->  prgen age, from (20) to (80) gen(preduc10) x(educ=10) rest(mean) n(7) 
 
logit: Predicted values as age varies from 20 to 80. 
 
          age        sex       born    married     childs       educ 
x=  46.935907  1.5532819  1.0644788  .46756757  1.8389961         10 
 
->  lab var preduc10p1 `"education=10"' 
 
->  prgen age, from (20) to (80) gen(preduc12) x(educ=12) rest(mean) n(7) 
 
logit: Predicted values as age varies from 20 to 80. 
 
          age        sex       born    married     childs       educ 
x=  46.935907  1.5532819  1.0644788  .46756757  1.8389961         12 
 
->  lab var preduc12p1 `"education=12"' 
 
->  prgen age, from (20) to (80) gen(preduc16) x(educ=16) rest(mean) n(7) 
 
logit: Predicted values as age varies from 20 to 80. 
 
          age        sex       born    married     childs       educ 
x=  46.935907  1.5532819  1.0644788  .46756757  1.8389961         16 
 
->  lab var preduc16p1 `"education=16"' 
 
->  prgen age, from (20) to (80) gen(preduc20) x(educ=20) rest(mean) n(7) 
 
logit: Predicted values as age varies from 20 to 80. 
 
          age        sex       born    married     childs       educ 
x=  46.935907  1.5532819  1.0644788  .46756757  1.8389961         20 
 
->  lab var preduc20p1 `"education=20"' 
 
Now we can plot four curves that show how probability of voting changes by age 
for an average person who has 10, 12, 16, or 10 years of education.  
. graph twoway connected preduc10p1 preduc12p1 preduc16p1 preduc20p1 preduc20x 
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If there are interactions or nonlinearities that required that you entered a 
variable more than once (e.g. X and X squared), you can use adjust command to do 
the graphs. This is done in the same manner as we did in OLS, but we need to use 
pr option to get probabilities rather than linear prediction (xb). This is the 
best way to examine what interactions mean in logit models, because their value 
For example we can replicate our previous graph. We run adjust command omitting 
age and educ: 
 
. adjust sex born married childs if e(sample), gen(prob1) pr 
--------------------------------------------------------------------------------    
Dependent variable: vote     Command: logit 
       Created variable: prob1 
   Variables left as is: age, educ 
 Covariates set to mean: sex = 1.5532819, born = 1.0644788, married = .46756756, 
childs = 1.8389962 
--------------------------------------------------------------------------------
------------------------------ 
      All |         pr 
----------+----------- 
          |    .724903 
---------------------- 
     Key:  pr  =  Probability 
 
. separate prob1, by(educ) 
              storage  display     value 
variable name   type   format      label      variable label 
------------------------------------------------------------------------------- 
prob10          float  %9.0g                  prob1, educ == 0 
prob11          float  %9.0g                  prob1, educ == 1 
prob12          float  %9.0g                  prob1, educ == 2 
prob13          float  %9.0g                  prob1, educ == 3 
prob14          float  %9.0g                  prob1, educ == 4 
prob15          float  %9.0g                  prob1, educ == 5 
prob16          float  %9.0g                  prob1, educ == 6 
prob17          float  %9.0g                  prob1, educ == 7 
prob18          float  %9.0g                  prob1, educ == 8 
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prob19          float  %9.0g                  prob1, educ == 9 
prob110         float  %9.0g                  prob1, educ == 10 
prob111         float  %9.0g                  prob1, educ == 11 
prob112         float  %9.0g                  prob1, educ == 12 
prob113         float  %9.0g                  prob1, educ == 13 
prob114         float  %9.0g                  prob1, educ == 14 
prob115         float  %9.0g                  prob1, educ == 15 
prob116         float  %9.0g                  prob1, educ == 16 
prob117         float  %9.0g                  prob1, educ == 17 
prob118         float  %9.0g                  prob1, educ == 18 
prob119         float  %9.0g                  prob1, educ == 19 
prob120         float  %9.0g                  prob1, educ == 20 
 
. line prob110 prob112 prob116 prob120 age, sort 
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3. Changes in Predicted Probabilities 
 
Another way to interpret logistic regression results is using changes in 
predicted probabilities.  These are changes in probability of the outcome as one 
variable changes, holding all other variables constant at certain values.  There 
are two ways to measure such changes – discrete change and marginal effect.   
 
A. Discrete change 
Discrete change is a change in predicted probabilities corresponding to a given 
change in the independent variable.  To obtain these, we calculate two 
probabilities and then calculate the difference between them.  These can be 
obtained using prvalue command, but it is much easier to do using prchange: 
. prchange 
logit: Changes in Probabilities for vote 
         min->max      0->1     -+1/2    -+sd/2  MargEfct 
    age    0.5320    0.0083    0.0093    0.1591    0.0093 
    sex    0.0219    0.0229    0.0218    0.0109    0.0218 
   born   -0.2212   -0.1435   -0.1914   -0.0474   -0.1929 
married    0.0970    0.0970    0.0977    0.0489    0.0979 
 childs   -0.0647   -0.0076   -0.0078   -0.0131   -0.0078 
   educ    0.8920    0.0166    0.0571    0.1661    0.0571 
              0       1 
Pr(y|x)  0.2751  0.7249 
 
            age      sex     born  married   childs     educ 
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    x=  46.9359  1.55328  1.06448  .467568    1.839  13.3946 
sd(x)=  17.1953  .497249  .245651  .499043  1.67616  2.92567 
 
Here we can see how probability changes when we go from the minimum value of 
each variable, e.g. education, to its maximum, how it changes when we go from 0 
to 1, how it changes per one unit at the mean (that is displayed as -+1/2 
because it calculates the differences between mean-1 and mean+1, and then 
divides it by 2.  Then there is the change per one standard deviation, also 
around the mean. We can also get a clear explanation of what’s what using help 
option: 
 
. prchange, help 
logit: Changes in Probabilities for vote 
         min->max      0->1     -+1/2    -+sd/2  MargEfct 
    age    0.5320    0.0083    0.0093    0.1591    0.0093 
    sex    0.0219    0.0229    0.0218    0.0109    0.0218 
   born   -0.2212   -0.1435   -0.1914   -0.0474   -0.1929 
married    0.0970    0.0970    0.0977    0.0489    0.0979 
 childs   -0.0647   -0.0076   -0.0078   -0.0131   -0.0078 
   educ    0.8920    0.0166    0.0571    0.1661    0.0571 
 
              0       1 
Pr(y|x)  0.2751  0.7249 
 
            age      sex     born  married   childs     educ 
    x=  46.9359  1.55328  1.06448  .467568    1.839  13.3946 
sd(x)=  17.1953  .497249  .245651  .499043  1.67616  2.92567 
 
 Pr(y|x): probability of observing each y for specified x values 
Avg|Chg|: average of absolute value of the change across categories 
Min->Max: change in predicted probability as x changes from its minimum to 
          its maximum 
    0->1: change in predicted probability as x changes from 0 to 1 
   -+1/2: change in predicted probability as x changes from 1/2 unit below 
          base value to 1/2 unit above 
  -+sd/2: change in predicted probability as x changes from 1/2 standard 
          dev below base to 1/2 standard dev above 
MargEfct: the partial derivative of the predicted probability/rate with 
          respect to a given independent variable 
 
We can also run prchange with fromto option to get starting and ending 
probabilities in addition to the amount of change: 
 
. prchange, fromto 
logit: Changes in Probabilities for vote 
 
             from:       to:      dif:     from:       to:      dif:     from:       to:      dif:     from:       to:      dif: 
            x=min     x=max  min->max       x=0       x=1      0->1     x-1/2     x+1/2     -+1/2   x-1/2sd   x+1/2sd    -+sd/2 
    age    0.4173    0.9493    0.5320    0.2280    0.2363    0.0083    0.7202    0.7295    0.0093    0.6383    0.7974    0.1591 
    sex    0.7127    0.7345    0.0219    0.6897    0.7127    0.0229    0.7139    0.7357    0.0218    0.7194    0.7303    0.0109 
   born    0.7372    0.5160   -0.2212    0.8807    0.7372   -0.1435    0.8104    0.6190   -0.1914    0.7480    0.7006   -0.0474 
married    0.6768    0.7739    0.0970    0.6768    0.7739    0.0970    0.6733    0.7711    0.0977    0.6998    0.7487    0.0489 
 childs    0.7390    0.6743   -0.0647    0.7390    0.7314   -0.0076    0.7288    0.7210   -0.0078    0.7314    0.7183   -0.0131 
   educ    0.0539    0.9458    0.8920    0.0539    0.0705    0.0166    0.6955    0.7525    0.0571    0.6342    0.8002    0.1661 
 

                   
         MargEfct 
    age    0.0093 
    sex    0.0218 
   born   -0.1929 
married    0.0979 
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 childs   -0.0078 
   educ    0.0571 
 
              0       1 
Pr(y|x)  0.2751  0.7249 
 
            age      sex     born  married   childs     educ 
    x=  46.9359  1.55328  1.06448  .467568    1.839  13.3946 
sd(x)=  17.1953  .497249  .245651  .499043  1.67616  2.92567 
 
We can customize the amount of change in X using delta option, set the value of 
X to whatever we want, and we can also select uncentered option if we don’t want 
our selected interval to be centered at X but would rather prefer it to start at 
X.  For example, with and without uncentered option: 
 
. prchange educ, x(educ=16) delta(4) uncentered 
 
logit: Changes in Probabilities for vote 
 
(Note: delta = 4) 
 
      min->max      0->1    +delta       +sd  MargEfct 
educ    0.8920    0.0166    0.0984    0.0803    0.0370 
 
              0       1 
Pr(y|x)  0.1525  0.8475 
 
            age      sex     born  married   childs     educ 
    x=  46.9359  1.55328  1.06448  .467568    1.839       16 
sd(x)=  17.1953  .497249  .245651  .499043  1.67616  2.92567 
 
. prchange educ, x(educ=16) delta(4) 
logit: Changes in Probabilities for vote 
 
(Note: d = 4) 
 
      min->max      0->1     -+d/2    -+sd/2  MargEfct 
educ    0.8920    0.0166    0.1497    0.1090    0.0370 
 
              0       1 
Pr(y|x)  0.1525  0.8475 
 
            age      sex     born  married   childs     educ 
    x=  46.9359  1.55328  1.06448  .467568    1.839       16 
sd(x)=  17.1953  .497249  .245651  .499043  1.67616  2.92567 
 
B. Marginal effects. 
 
The last column of prchange output presents marginal effects – these are partial 
derivatives, slopes of probability curve at a certain set of values of 
independent variables. Marginal effects, of course, vary along X; they are the 
largest at the value of X that corresponds to P(Y=1|X)=.5 – this can be seen in 
the graph.   
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Usually, if marginal effects are presented in journal articles, they are 
evaluated with all variables held at their means. In case of logistic 
regression, marginal effect for X can be calculated as P(Y=1|X)*P(Y=0|X)*b; For 
example, we can replicate the last result,  
di 0.1525*0.8475*0.28628 
.0369999 
 
The following graph compares a marginal change and a discrete change at a 
specific point:  

 
 
We can also generate marginal effects with standard errors using mfx compute.  
Computing those standard errors can take a while, however. 
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. mfx compute 
Marginal effects after logit 
      y  = Pr(vote) (predict) 
         =  .72490265 
------------------------------------------------------------------------------ 
variable |      dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X 
---------+-------------------------------------------------------------------- 
     age |   .0092993      .00064   14.50   0.000   .008042  .010556   46.9359 
     sex |   .0218211      .01905    1.15   0.252  -.015522  .059164   1.55328 
    born |  -.1929114      .03711   -5.20   0.000  -.265655 -.120167   1.06448 
 married*|   .0970482       .0192    5.05   0.000   .059412  .134684   .467568 
  childs |  -.0078062      .00653   -1.20   0.232  -.020596  .004984     1.839 
    educ |   .0570904      .00382   14.96   0.000    .04961  .064571   13.3946 
------------------------------------------------------------------------------ 
(*) dy/dx is for discrete change of dummy variable from 0 to 1 
 
Marginal effects are inappropriate for binary independent variables; that’s why 
discrete changes are reported for those instead.  
 
We could also specify other values of X for this computation using “at” option: 
. mfx compute, at(age=30) 
[output omitted] 
 
Note: For binary dependent variables, though, marginal effects are not very 
useful – discrete changes are more easily interpretable.  
 
Also note that marginal effects in models with interactions or higher order 
terms are complicated to estimate. To learn more about that, you can consult 
http://www.stata.com/support/faqs/stat/mfx_interact.html 
and 
http://www.unc.edu/~enorton/NortonWangAi.pdf 
 
And to learn more about interactions in logistic models: 
http://www.ats.ucla.edu/stat/stata/seminars/stata_vibl/ 
 
Binary Logit Article Example: 
Alba, Richard, John Logan, Amy Lutz, and Brian Stults. 2002. “Only English by 
the Third Generation? Loss and Preservation of the Mother Tongue among the 
Grandchildren of Contemporary Immigrants.” Demography, 39: 467-484. 
 
Questions to answer about the article: 
1. What are the dependent and the independent variables in this analysis?  
2. What is reported in Table 4? How can we interpret these results? How do the 
authors discuss these results in the text? 
3. What is reported in Table 5? How can we interpret these results? 
4. In addition to what the authors chose to present, how else could they have 
presented their results? 
5. What measures of model fit and model diagnostics are presented? What 
diagnostics and potential problems did the authors not address?  
 
 
 


