SC704: Topics in Multivariate Analysis
Instructor: Natasha Sarkisian

Poisson Regression

Count variables are often treated as though they are continuous, and OLS is
used. OLS in this case can result in inefficient, inconsistent, and biased
estimates. Need to use models that are developed specifically for count data.
Poisson model is the most basic of them.

Poisson distributions:
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Characteristics of Poisson distribution:
1. EQy) =
2. The variance equals the mean: Var(y)=E(y)= p -- equidispersion. In

practice, the variance is often larger than u: this is called overdispersion.
The main reason for overdispersion is heterogeneity — if there are different
groups within data that have different means and all of them are actually equal
to their variances, when you put all of these groups together, the resulting
combination will have variance larger than the mean. Therefore, we need to
control for all those sources of heterogeneity. Thus, when using Poisson
regression, we need to ensure that the conditional variance equals to the mean
— that i1s Var(y|X)=E(y|X).-

3. As pu increases, the probability of zeros decreases. But for many count
variables, there are more observed zeros than would be predicted from Poisson
distribution

4. As pu increases, the Poisson distribution approximates normal.

5. The assumption of independence of events — past outcomes don’t affect future
outcomes.



We usually start by examining the raw distribution and comparing it with
poisson:

. tab childs

n

umber of
children

seven

I
I
+
I
I
I
I
I
I
I
I
I
+
I

Freq. Percent Cum.
799 28.95 28.95
469 16.99 45.94
657 23.80 69.75
481 17.43 87.17
185 6.70 93.88

73 2.64 96.52

40 1.45 97.97

22 0.80 98.77

34 1.23 100.00
2,760 100.00

. poisson childs

2760
0.00

0.0000

Interval]

Iteration O: log likelihood = -5096.6865
Iteration 1: log likelihood = -5096.6865
Poisson regression Number of obs =
LR chi2(0) =
Prob > chi2 =
Log likelihood = -5096.6865 Pseudo R2 =
childs | Coef. Std. Err. z P>]z] [95% Conf.
_____________ e e e
_cons | -5936071 .0141464 41.96 0.000 -5658807

.6213334

. prcounts pois, plot max(8)

. gr twoway connected poisobeq poispreq poisval
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Overdispersion results in Poisson distribution underpredicting the outcomes in

the two ends of the distribution — it underpredicts zeros and outcomes of 6 and
larger. Fitting this kind of unconditional Poisson distribution does not take

heterogeneity into account — the average number of children varies according to
some characteristics of respondents. Next, we have to allow for that — need to
incorporate the observed heterogeneity. A multivariate Poisson regression

model does just that. It models the average count, pu:

H=ECy[x)=exp(Xb)

We exponentiate to force the values to be positive—counts cannot be below 0.
We get a nonlinear model that looks like this:

Panel A: E(ylx) for x=0 to 25
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Let’s run a multivariate Poisson model:
. poisson childs sex married sibs born educ
Iteration O: log likelihood = -4784.5123
Iteration 1: log likelihood = -4784.5079
Iteration 2: log likelihood = -4784.5079
Poisson regression Number of obs = 2745
LR chi2(5) = 572.66
Prob > chi2 = 0.0000
Log likelihood = -4784.5079 Pseudo R2 = 0.0565
childs | Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____________ e
sex | -195229 .0289993 6.73 0.000 .1383915 .2520665
married | .4486183 .0288777 15.54  0.000 -392019 .5052176
sibs | -0385556 -004219 9.14 0.000 -0302865 .0468246
born | -.2209195 .0522438 -4.23 0.000 -.3233154  -.1185235
educ | -.061697 0048163 -12.81 0.000 -.0711369  -.0522572
_cons | .9547179 -1010692 9.45 0.000 . 7566258 1.15281



Can interpret sign and significance — to interpret the size, we exponentiate
the coefficients — generating so-called incidence-rate ratios (comparable to
odds ratios). But we’ll return to that later. First, let’s consider model fit
and diagnostics.

Once again, to assess how well our model predicts counts, we can graphically
examine the predicted probabilities for different counts (these are

probabilities for someone average on all characteristics) using prcounts
command:

. prcounts prm, plot max(8)

(19 missing values generated)

. lab var poispreq "Univariate Poisson"
. lab var prmpreq "Multivariate Poisson”

. lab var prmobeq "'Observed"

- gr twoway connected poisobeq poispreq prmpreq poisval, ylabel(0 (.1) .3)
ytitle("Probability of Count'™)
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Multivariate Poisson offers a slight improvement over univariate Poisson — it
explains some heterogeneity. But it still doesn’t fit very well —
underpredicts zeros, overpredicts ones, etc.

Just to clarify this, we can also obtain the probabilities presented in this
graph using prvalue:

. prvalue

poisson: Predictions for childs



Predicted rate: 1.71 95% CI [1.66 , 1.76]
Predicted probabilities:

Pr(y=0]x): 0.1804 Pr(y=1]x): 0.3089
Pr(y=2]x): 0.2646 Pr(y=3|x): 0.1510
Pr(y=4|x): 0.0647 Pr(y=5|x): 0.0221
Pr(y=6]x): 0.0063 Pr(y=7]x): 0.0015
Pr(y=8]x): 0.0003 Pr(y=9|x): 0.0001

sex married sibs born educ
X= 1.5555556 .45974499 3.6018215 1.0921676 13.358834

So we examined model fit graphically. We can also obtain a goodness-of-fit
test (there are two versions of it, one based on deviance residuals, one is
based on Pearson residuals; they usually produce similar results):

. estat gof

Goodness-of-fit chi2 = 4279.437

Prob > chi2(2739) = 0.0000
. estat gof, pearson

Goodness-of-fit chi2 = 3943.17

Prob > chi2(2739) = 0.0000

Since the probability is below .05, this suggests that predicted counts are
significantly different from the observed ones, and therefore Poisson model
doesn’t fit well.

Next, we turn to interpretation of Poisson models. First, as mentioned above,
we can calculate incidence rate ratios:

. poisson childs sex married sibs born educ, irr

Poisson regression Number of obs = 2745
LR chi2(5) = 572.66

Prob > chi2 = 0.0000

Log likelihood = -4784.5079 Pseudo R2 = 0.0565
childs | IRR Std. Err. z P>|z] [95% Conf. Interval]
_____________ e e e
sex | 1.215589 .0352512 6.73 0.000 1.148425 1.286682

married | 1.566147 .0452267 15.54 0.000 1.479966 1.657346

sibs | 1.039308 -0043848 9.14 0.000 1.03075 1.047938

born | -8017812 .0418881 -4.23 0.000 .7237455 -8882309

educ | -9401677 .0045282 -12.81 0.000 -9313344 -9490847

So the number of children for women is 1.22 times (or 22%) higher than the
number for men, the number of children for married is 1.57 times (or 57%)
higher than for those not currently married, each additional sibling increases
the number of children by almost 4%, being foreign born decreases the number of
children by almost 10%, and each year of education reduces the number of
children by 6%.

We can also obtain incidence rate ratios using listcoef — this will also allow
us to see standardized ratios describing the change per one standard deviation
of each variable.



. listcoef
poisson (N=2745): Factor Change in Expected Count
Observed SD: 1.6887584

childs | b z P>]z| e”b e bStdX SDofX
_____________ e
sex | 0.19523 6.732 0.000 1.2156 1.1019 0.4970

married | 0.44862 15.535 0.000 1.5661 1.2506 0.4985

sibs | 0.03856 9.139 0.000 1.0393 1.1227 3.0008

born | -0.22092 -4.229 0.000 0.8018 0.9381 0.2893

educ | -0.06170 -12.810 0.000 0.9402 0.8324 2.9741

And we can get these as percents:

. listcoef, percent

poisson (N=2745): Percentage Change in Expected Count
Observed SD: 1.6887584

childs | b z P>|z] % %StdX SDofX
_____________ S
sex | 0.19523  6.732  0.000 21.6 10.2 0.4970

married | 0.44862 15.535 0.000 56.6 25.1 0.4985

sibs | 0.03856  9.139 0.000 3.9 12.3 3.0008

born | -0.22092 -4.229 0.000 -19.8 -6.2 0.2893

educ | -0.06170 -12.810 0.000 -6.0 -16.8 2.9741

Marriage and education seem to have the largest effects.

Listcoef with reverse option doesn’t work after Poisson because we are now
dealing with incidence rate ratios rather than odds ratios, so it doesn’t make
sense to report them. To compare the effect sizes between positive and
negative effects, you can still calculate them, e.g., for education:

-di exp(-06170*2.9741)

1.2014173

So the effect of marriage is still stronger than that of education.

Next, to continue interpretation of this model, we can examine predicted rates
for various groups. For example,
. prtab sex married, x(born=1)
poisson: Predicted rates for childs
responden |
ts sex | 0 1
__________ S,
male | 1.2760 1.9983
female | 1.5510 2.4292
sex married sibs born educ
x= 1.5555556 .45974499 3.6018215 1 13.358834

We can see that for an average native-born woman, the average number of
children she has if she is single is 1.55 and if she is married 2.43. An
average native born man has 1.27 children on average if he is single and
approximately 2 children if he is married.

We can also examine how such predicted rates change per change of each
independent variable.



. prchange

poisson: Changes in Predicted Rate for childs
matsize too small

You have attempted to create a matrix with more than 40 rows or columns or
to estimate a model with more than 40

variables plus ancillary parameters. You need to increase matsize using
the set matsize command; see help matsize.
r(908);

We are attempting a complex calculation, need to allow Stata to operate larger
matrices.

. set matsize 800

Now we can do it:

. prchange
poisson: Changes in Predicted Rate for childs
min->max 0->1 -+1/2 -+sd/2 MargEfct

sex 0.3313 0.2725 0.3349 0.1662 0.3344
married 0.7889 0.7889 0.7748 0.3838 0.7683
sibs 2.5712 0.0586 0.0660 0.1983 0.0660
born -0.3465 -0.4321 -0.3791 -0.1095 -0.3784
educ -2.7681 -0.2336 -0.1057 -0.3147 -0.1057

exp(xb): 1.7127
sex married sibs born educ
x= 1.55556 .459745 3.60182 1.09217 13.3588
sd(x)= .496995 .498468 3.00084 .289315 2.97411
To make this more interpretable, let’s on rely on means for dummies:

. prchange, x(married=1 sex=2 born=1)

poisson: Changes in Predicted Rate for childs
min->max 0->1 -+1/2 -+sd/2 MargEfct
sex 0.4308 0.3544 0.4750 0.2358 0.4742
married 0.8781 0.8781 1.0989 0.5443 1.0898
sibs 3.6468 0.0831 0.0937 0.2812 0.0937
born -0.4815 -0.6005 -0.5377 -0.1553 -0.5366
educ -3.9261 -0.3314 -0.1499 -0.4464 -0.1499

exp(xb): 2.4292
sex married sibs born educ
X= 2 1 3.60182 1 13.3588
sd(x)= .496995 .498468 3.00084 .289315 2.97411

So for an average native born married women, each additional sibling increases
her number of children by .09, and each additional year of education decreases
it by .15. For an average native-born woman, marriage increases her number of
kids by .88. For an average married woman, being foreign-born decreases the
number of children by 0.48. And the difference between the number of children
of an average native-born married woman and an average native-born married man
is .43 of a child.

In addition to predicted rates, we can also obtain predicted probabilities for
each count for specific combinations of independent variables. For a single
native born man:



. prvalue, x(married=0 sex=1 born=1) save
poisson: Predictions for childs
Predicted rate: 1.22 95% CI [1.15 , 1.29]
Predicted probabilities:

Pr{y=0]x): 0.2953 Pr(y=1|x): 0.3602

Pr(y=2]x): 0.2197 Pr(y=3|x): 0.0893

Pr(y=4|x): 0.0272 Pr(y=5|x): 0.0066

Pr(y=6]x): 0.0014 Pr(y=7]x): 0.0002

Pr(y=8]x): 0.0000 Pr(y=9]x): 0.0000

sex married sibs born educ age

X= 1 0 3.6082663 1 13.354792 46.301756

For a single native-born woman, comparing the two groups side by side:
- prvalue, x(married=0 sex=2 born=1) dif
poisson: Change in Predictions for childs
Predicted rate: 1.46 95% CI [1.39 , 1.53]
Saved: 1.22
Difference: .242
Predicted probabilities:

Current Saved Difference
Pr(y=0]x): 0.2317 0.2953 -0.0636
Pr{y=1]x): 0.3388 0.3602 -0.0214
Pr{y=2|x): 0.2477 0.2197 0.0280
Pr(y=3|x): 0.1207 0.0893 0.0314
Pr(y=4|x): 0.0441 0.0272 0.0169
Pr(y=5]x): 0.0129 0.0066 0.0063
Pr(y=6]x): 0.0031 0.0014 0.0018
Pr{y=7]x): 0.0007 0.0002 0.0004
Pr(y=8|x): 0.0001 0.0000 0.0001
Pr{y=9]x): 0.0000 0.0000 0.0000
sex married sibs born educ age
Current= 2 0 3.6082663 1 13.354792 46.301756
Saved= 1 0 3.6082663 1 13.354792 46.301756
Diff= 1 0 0 0 0 0

Women have lower probabilities of having no kids or 1 child and higher
probabilities of having 2, 3 and 4 children.

We can also graph predicted probabilities for each count.

. prgen educ, x(sex=1 married=1 born=1) from(1l) to(20) gen(edprm) n(20)
poisson: Predicted values as educ varies from 1 to 20.

sex married sibs born educ age
X= 1 1 3.6082663 1 13.354792 46.301756

. prgen educ, x(sex=2 married=1 born=1) from(1l) to(20) gen(edprf) n(20)
poisson: Predicted values as educ varies from 1 to 20.

sex married sibs born educ age
X= 2 1 3.6082663 1 13.354792 46.301756

Note — it generated separate variables for each count. Let’s label the first
four.

. lab var edprmpO "0 kids married native-born men"
. lab var edprmpl "1 kid married native-born men"

. lab var edprmp2 "2 kids married native-born men"
. lab var edprmp3 "3 kids married native-born men"



. lab var edprfp0 "0 kids married native-born women"
. lab var edprfpl "1 kid married native-born women"

. lab var edprfp2 "2 kids married native-born women"
. lab var edprfp3 "3 kids married native-born women"

Now we are ready to graph them:

- gr twoway connected edprmpO edprfpO edprfx, ylabel(0(-1).4)
ytitle("Probability of Zero Kids")

Flrobablllty.%f Zero K|q§
1 1

T T T
0 5 10 15 20
Changing value of educ

| —e— 0 kids married native-born men—e— 0 kids married native-born womlan

. gr twoway connected edprmpl edprfpl edprfx, ylabel(0(.1).4)
ytitle("Probability of One Child"™)
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. gr twoway connected edprmp2 edprfp2 edprfx, ylabel(0(.1).4)
ytitle("Probability of Two Kids")



.Plrobabllltylgf Two K|d§
1

T
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Changing value of educ

|—o— 2 kids married native-born men—e— 2 kids married native-born Womlen

. gr twoway connected edprmp3 edprfp3 edprfx, ylabel(0(-1).4)
ytitle("'Probability of Three Kids')

ﬂ:_

?rlobablllw Oﬁ Three K|%s
1 1

T
0 5 10 15 20
Changing value of educ

—e— 3 kids married native-born men—e— 3 kids married native-born womlan

Can put these all together in one graph:

- gr twoway connected edprmpO edprfpO0 edprmpl edprfpl edprmp2 edprfp2 edprmp3
edprfp3 edprfx, ylabel(0(.1).4) ytitle("Probability of No. of Kids")
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Diagnostics:

In terms of diagnostics, we can test for multicollinearity the same way we did
with logistic models. To test for linearity and additivity, we can use Box-
Tidwell test and mrunning and lowess using a log of the original count variable
(add 1 to the count before logging it; otherwise zeros will become missing):

. gen countlg=log(childs+1)

We can also look at robust standard errors to compare them to the regular ones.
We can also get residuals and leverage statistics to assess the outliers;
however, to do that, we need to estimate the same model using generalized
linear models command — GLM. Unfortunately, predict after Poisson is very
limited, but after GLM version of Poisson we can get a range of statistics.

- glm childs sex married sibs born educ, family(poisson)

Generalized linear models No. of obs = 2745

Optimization o ML Residual df = 2739

Scale parameter = 1

Deviance = 4279.437048 (1/7df) Deviance = 1.562409

Pearson = 3943.169972 (1/df) Pearson = 1.439639
Variance function: V(u) = u [Poisson]

Link function :gw) = In(uw) [Log]
AlIC = 3.490352
Log likelihood = -4784.50787 BIC = -17406.7
| OIM

childs | Coef. Std. Err. z P>]z] [95% Conf. Interval]

_____________ e e e

sex | -195229 .0289993 6.73 0.000 .1383915 .2520665

married | .4486183 .0288777 15.54  0.000 -392019 .5052176

sibs | -0385556 -004219 9.14 0.000 -0302865 .0468246

born | -.2209195 .0522438 -4.23 0.000 -.3233154  -.1185235

educ | -.061697 .0048163 -12.81 0.000 -.0711369 -.0522572

cons | .9547179 .1010692 9.45 0.000 . 7566258 1.15281
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Here’s what we can obtain by using predict after this (among other statistics):

cooksd calculates Cook"s distance, which measures the aggregate change in
the estimated coefficients when each observation is left out of the
estimation.

deviance calculates the deviance residuals. Deviance residuals are
recommended by McCullagh and Nelder and by others as having the best
properties for examining the goodness of fit of a GLM. They are
approximately normally distributed if the model is correct. They may
be plotted against fitted values or against a covariate to inspect the
model"s fit. Also see the pearson option below.

hat calculates the diagonals of the "hat" matrix as an analog to simple
linear regression.

pearson calculates the Pearson residuals. Be aware that Pearson residuals
often have markedly skewed distributions for non-normal family
distributions. Also see the deviance option above.

————+ OptioNS +-—————

standardized requests that the residual be multiplied by the factor
(1-h)~[-172], where h is the diagonal of the hat matrix. This is done
to account for the correlation between depvar and its predicted value.

studentized requests that the residual be multiplied by one over the
square root of the estimated scale parameter.

We can use these the same way we have used them after logit, e.g.:
. predict p

(option mu assumed; predicted mean childs)

(19 missing values generated)

. predict rs, pearson standard

(20 missing values generated)

. predict cooksd, cooksd

(20 missing values generated)

. scatter p rs, xline(0) mlabel(id)
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. scatter cooksd p, mlabel(id)
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Would have a look at 1904, 921, 1643, 1646, 201.

Models Adjusted for Exposure:
Models for count data also allow controlling for so-called exposure — that is
usually a variable that indicates how long there has been an opportunity to
accumulate counts. E.g. an 20 y.o. and a 40 y.o. had different time available
to have kids, and that will likely be reflected in their number of children.
So we can control for the duration of reproductive age — that’s the amount of
exposure one had. Let’s assume reproductive age to start at 15 and end at 45
(these numbers of course will vary individually, and it would be best to get a
variable with individual data on that, but this is our best approximation):

- gen reprage=age-15

(14 missing values generated)

. replace reprage=30 if age>45 & age~=.

(1312 real changes made)

. poisson childs sex married sibs

born educ, exposure(reprage)

Poisson regression Number of obs = 2734

LR chi2(5) = 365.33

Prob > chi2 = 0.0000

Log likelihood = -4474_.7807 Pseudo R2 = 0.0392

childs | Coef. Std. Err. z P>|z] [95% Conf. Interval]

_____________ g

sex | -1829962 -0291302 6.28 0.000 -1259021 -2400902

married | -3223659 -0290622 11.09 0.000 .265405 .3793267

sibs | .0249154 -0042745 5.83 0.000 .0165375 .0332933

born | -.1354091 .0522745 -2.59 0.010 -.2378651 -.032953

educ | -.0575382 .004645 -12.39 0.000 -.0666423 -.0484341

_cons | -2.218856 -1006406 -22.05 0.000 -2.416108 -2.021604
reprage | (exposure)

What this actually does is: In(reprage) is entered in the model, but its
coefficient is constrained to 1. If we don’t control for exposure, it’s
assumed that all cases have had the same exposure.

13



You can get the same result by using a log of exposure variable and specifying
it using offset option:
- gen repragelog=log(reprage)
. poisson childs sex married sibs born educ, offset(repragelog)
Poisson regression

Log likelihoo

d

Number of obs

2734
365.33
0.0000
0.0392

sex
married
sibs

born

educ
_cons
repragelog

Interval]

-4474.7807
Coef. Std. Err. z

.1829962 .0291302 6.28
.3223659 .0290622 11.09
.0249154 .0042745 5.83
-.1354091 .0522745 -2.59
-.0575382 .004645 -12.39
-2.218856 .1006406 -22.05
(offset)

LR chi2(5) =

Prob > chi2 =

Pseudo R2 =
P>|z] [95% Conf.
0.000 .1259021
0.000 .265405
0.000 .0165375
0.010 -.2378651
0.000 -.0666423
0.000 -2.416108

-2400902
-3793267
-0332933
-.032953
-.0484341
-2.021604

. prcounts expo, plot max(8)
(31 missing values generated)
. lab var expopreq "Exposure model™
. gr twoway connected poisobeq poispreq prmpreq expopreq poisval, ylabel(0 (-1)
-3) ytitle('Probability of Count'™)

(V)__

Probability of Count

2

4

6

Count

———e—— Observed
——e—— Multivariate Poisson

——o—— Univariate Poisson
Exposure model

This model fits somewhat better but still has the same problems.
Further, when we think that our measure of exposure is not a perfect measure of
how much time one had to accumulate counts, we may just enter log of exposure

variable it into the model without constraining the coefficient to 1:
. poisson childs sex married sibs born educ repragelog
Number of obs

Poisson regression

Log likelihood = -4473.9245

childs

2734
1151.72
0.0000
0.1140

Interval]

_____________ o __

sex
married
sibs

-1835258
-3266819
-0254587

Std. Err. z

.0291282 6.30
.0292507 11.17
.0042934 5.93

LR chi2(6) =

Prob > chi2 =

Pseudo R2 =
P>]z] [95% Conf.
0.000 .1264356
0.000 .2693516
0.000 .0170438

.240616
.3840121
-0338737
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born | -.1396764

educ | -.0577855
repragelog | -9417878
_cons | -2.028168

-0523749 -2.67 0.008 -.2423293
-0046561 -12.41 0.000 -.0669113
-0441539 21.33 0.000 -8552478
-1760539 -11.52 0.000 -2.373228

-.0370235
-.0486597

1.028328
-1.683109

Here it has a coefficient not significantly different from 1 (the confidence
interval includes 1), so reprage seems to be a good estimate of exposure time.
IT it would be significantly different from 1, and we would have substantive
reasons to believe that our measure of exposure is imperfect, we might use this
model instead of the one with exposure option or offset option.

When interpreting models with exposure, we cannot, unfortunately, directly use

prtab, prgen, and prvalue as those
time) rather than total counts. We
values by average exposure values,

show incidence rates (rates per unit of
can, potentially, use them and multiply the
but there is an easier way to get around

that problem. As mentioned above, the way models with exposure are estimated
is: the log of exposure variable is entered into the model, but its coefficient
is constrained to 1. We could simulate that using constraints option — first,
we specify that constraint #1 will mean repragelog coefficient should be 1, and
then estimate the model adding repragelog and using constraint 1:

. constraint 1 repragelog=1

- poisson childs sex married sibs born educ repragelog, constraints(l)

Poisson regression

Log likelihood = -4474_.7807

( 1) [childs]repragelog =

childs | Coef.
_____________ +

sex | .1829962
married | -3223659
sibs | .0249154
born | -.1354091
educ | --0575382
repragelog | 1
_cons | -2.218856

Now prtab, prvalue, and prgen will work. E.g.:

. prtab married sex born

poisson: Predicted rates for childs

| was r born in this country and
respondents sex

| -—--- yes ----

married | male female
__________ S,

O | 1.2333 1.4810

1] 1.7025 2.0443

sex married

Number of obs = 2734
Wald chi2(5) = 371.72
Prob > chi2 = 0.0000
1
Std. Err. z P>|z] [95% Conf. Interval]
.0291302 6.28 0.000 .1259021 .2400902
.0290622 11.09 0.000 .265405 .3793267
.0042745 5.83 0.000 .0165375 .0332933
.0522745 -2.59 0.010 -.2378651 -.032953
.004645 -12.39 0.000 -.0666423 -.0484341
1006406 -22.05 0.000  -2.416108 -2.021604
_____ no ——— ——
male female
1.0771 1.2934
1.4869 1.7854
sibs born educ repragelog

X= 1.5548647 -46013168

3.6082663 1.0921726 13.354792 3.0594865

In terms of diagnostics and model fit for models with exposure, everything
works the same except Box-Tidwell test which does not work with exposure or
offset option, but does work with constraints:
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. constraint 1 repragelog=1
. constraint 2 lrepr__1 =1

. boxtid poisson childs educ sex married

Poisson regression

Log likelihood = -4472.2691
(1 [childs]lrepr_1 =1

Number of obs
Wald chi2(8)

sibs born repragelog, constraints(l 2)

2734
852.30
0.0000

Interval]

_____________ b

-.2057714
.2858646
-5659532
.2422751

1.74072
-2393366
-3812348

-.0374101
-3117275

3.938

childs | Coef. Std. Err.
leduc__1 | -.5378193 -1694153
leduc_pl | -.0004982 -1461062
Isibs__1 | -3208799 -1250397
Isibs_pl | -0009448 -12313
Irepr__1 | 1 -
Irepr_pl | 1.577093 .0834845
Isex__1 | -182057 .0292248
married | -3238347 -0292863
Iborn__1 | -.1413858 -0530498
_cons | -2499269 -0315315

educ | --0582693 -0046599

pl | 1.067851 .2711467

sibs | -0255532 -0042942

pl | .7165476 -3622967

repragelog| 1 0

pl | -2074807 -4305246

Prob > chi2
P>|z]| [95% ConfT.
0.002 -.8698671
0.997 -.2868611
0.010 .0758066
0.994 -.2403854
0.000 1.413467
0.000 1247774
0.000 .2664346
0.008 -.2453614
0.000 .1881263

Nonlin. dev. 0.069
Nonlin. dev. 0.742
Nonlin. dev. 4.167

Deviance: 8944 .406.

For those statistics that are obtained using predict after GLM, we need to use
offset option with GLM (exposure option doesn’t work for that):
- glm childs sex married sibs born educ, Ffamily(poisson) offset(repragelog)

Generalized linear

Optimization

Deviance
Pearson

Variance function

Link function

Log likelihood

models
- ML

3675.111598
3353.513369

No. of obs
Residual df
Scale parameter
(1/df) Deviance
(1/7df) Pearson

2734
2728

1
1.347182
1.229294

3.277821
-17912 .97

I

I

+

sex |
married |
sibs |
born |
educ |
_cons |
repragelog |

V(u) =u
g(uw) = In(u)
= -4474.780694
OIM
Coef. Std. Err.
.1829962 .0291302
.3223659 .0290622
.0249154 .0042745
-.1354091 .0522745
-.0575382 .004645
-2.218856 .1006406
(offset)

[Poisson]

[Log]

AIC =

BIC =
P>|z] [95% Conf.
0.000 -1259021
0.000 .265405
0.000 .0165375
0.010 -.2378651
0.000 -.0666423
0.000 -2.416108

-2400902
-3793267
.0332933
-.032953
-.0484341
-2.021604

After that, we can obtain residuals etc.
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