SC704: Topics in Multivariate Analysis Instructor: Natasha Sarkisian

Poisson Regression

Count variables are often treated as though they are continuous, and OLS is used. OLS in this case can result in inefficient, inconsistent, and biased estimates. Need to use models that are developed specifically for count data. Poisson model is the most basic of them.

Characteristics of Poisson distribution:

1. $E(y) = \mu$

2. The variance equals the mean: $Var(y)=E(y)=\mu$ -- equidispersion. In practice, the variance is often larger than μ : this is called overdispersion. The main reason for overdispersion is heterogeneity - if there are different groups within data that have different means and all of them are actually equal to their variances, when you put all of these groups together, the resulting combination will have variance larger than the mean. Therefore, we need to control for all those sources of heterogeneity. Thus, when using Poisson regression, we need to ensure that the conditional variance equals to the mean - that is Var(y|X)=E(y|X).

3. As μ increases, the probability of zeros decreases. But for many count variables, there are more observed zeros than would be predicted from Poisson distribution

4. As μ increases, the Poisson distribution approximates normal.

5. The assumption of independence of events - past outcomes don't affect future outcomes.

We usually start by examining the raw distribution and comparing it with poisson:

Observed

------ Univariate Poisson

Overdispersion results in Poisson distribution underpredicting the outcomes in the two ends of the distribution – it underpredicts zeros and outcomes of 6 and larger. Fitting this kind of unconditional Poisson distribution does not take heterogeneity into account – the average number of children varies according to some characteristics of respondents. Next, we have to allow for that – need to incorporate the observed heterogeneity. A multivariate Poisson regression model does just that. It models the average count, μ :

 $\mu = E(y | x) = exp(Xb)$

We exponentiate to force the values to be positive-counts cannot be below 0. We get a nonlinear model that looks like this:

Let's run a multivariate Poisson model: . poisson childs sex married sibs born educ

Iteration 0: log likelihood = -4784.5123 Iteration 1: log likelihood = -4784.5079 Iteration 2: log likelihood = -4784.5079

Poisson regres	sion			Numbe	r of obs	=	2745
				LR ch	i2(5)	=	572.66
				Prob	> chi2	=	0.0000
Log likelihood		Pseud	o R2	=	0.0565		
childs	Coef.	Std. Err.	Z	P> z	[95% Co	nf.	Interval]
+	105000		·		120201		
sex	.195229	.0289993	6.73	0.000	.138391	5	.2520665
married	.4486183	.0288777	15.54	0.000	.39201	9	.5052176
sibs	.0385556	.004219	9.14	0.000	.030286	5	.0468246
born	2209195	.0522438	-4.23	0.000	323315	4	1185235
educ	061697	.0048163	-12.81	0.000	071136	9	0522572
_cons	.9547179	.1010692	9.45	0.000	.756625	8	1.15281

Can interpret sign and significance - to interpret the size, we exponentiate the coefficients - generating so-called incidence-rate ratios (comparable to odds ratios). But we'll return to that later. First, let's consider model fit and diagnostics.

Once again, to assess how well our model predicts counts, we can graphically examine the predicted probabilities for different counts (these are probabilities for someone average on all characteristics) using procunts command: . procunts prm, plot max(8)

(19 missing values generated)

- . lab var poispreq "Univariate Poisson"
- . lab var prmpreq "Multivariate Poisson"
- . lab var prmobeq "Observed"

. gr twoway connected poisobeq poispreq prmpreq poisval, ylabel(0 (.1) .3) ytitle("Probability of Count")

Multivariate Poisson offers a slight improvement over univariate Poisson - it explains some heterogeneity. But it still doesn't fit very well - underpredicts zeros, overpredicts ones, etc.

Just to clarify this, we can also obtain the probabilities presented in this graph using prvalue:

. prvalue

poisson: Predictions for childs

Predicted rate:	1.71 95%	& CI [1.66	, 1.7	6]			
Predicted probabilities:							
Pr(y=0 x): 0Pr(y=2 x): 0Pr(y=4 x): 0Pr(y=6 x): 0Pr(y=8 x): 0).2646 Pr(y=).0647 Pr(y=).0063 Pr(y=	=3 x): 0.1 =5 x): 0.1 =7 x): 0.1	1510 0221 0015				
sex x= 1.5555556 .	married .45974499 3.			educ 13.358834			
So we examined model fit graphically. We can also obtain a goodness-of-fit test (there are two versions of it, one based on deviance residuals, one is based on Pearson residuals; they usually produce similar results): . estat gof Goodness-of-fit chi2 = 4279.437 Prob > chi2(2739) = 0.0000							
. estat gof, pea Goodnes Prob >	arson ss-of-fit chi chi2(2739)	i2 = 394 = 0.	3.17 0000				
Since the probak significantly di doesn't fit well	ifferent from						
Next, we turn to we can calculate				ls. First	, as mentio	ned above,	
. poisson childs Poisson regressi Log likelihood =	ion = -4784.5079			Number LR chi2 Prob > Pseudo	of obs = (5) = chi2 = R2 =	572.66 0.0000 0.0565	
childs	IRR	Std. Err.	Z	P> z		Interval]	
sex married sibs born educ	1.215589 1.566147 1.039308 .8017812 .9401677	.0352512 .0452267 .0043848 .0418881 .0045282	6.73 15.54 9.14 -4.23 -12.81	0.000 0.000 0.000 0.000 0.000	1.148425 1.479966 1.03075 .7237455 .9313344	1.286682 1.657346 1.047938 .8882309 .9490847	
So the number of number for men, higher than for the number of ch	the number of those not cu nildren by al	of children urrently ma: lmost 4%, be	for marr rried, ea eing fore	ied is 1.5 ch additio	7 times (or nal sibling	57%) increases	

We can also obtain incidence rate ratios using listcoef - this will also allow us to see standardized ratios describing the change per one standard deviation of each variable.

children by almost 10%, and each year of education reduces the number of

children by 6%.

. listcoef poisson (N=2745): Factor Change in Expected Count Observed SD: 1.6887584

childs	b	Z	P> z	e^b	e^bStdX	SDofX
sex married sibs born educ	0.19523 0.44862 0.03856 -0.22092 -0.06170	6.732 15.535 9.139 -4.229 -12.810	0.000 0.000 0.000 0.000 0.000 0.000	1.2156 1.5661 1.0393 0.8018 0.9402	1.1019 1.2506 1.1227 0.9381 0.8324	0.4970 0.4985 3.0008 0.2893 2.9741

And we can get these as percents: . listcoef, percent

poisson (N=2745): Percentage Change in Expected Count

Observed SD: 1.6887584

childs	b	Z	P> z	 %	 %StdX	SDofX
sex	0.19523	6.732	0.000	21.6	10.2	0.4970
married	0.44862	15.535	0.000	56.6	25.1	0.4985
sibs	0.03856	9.139	0.000	3.9	12.3	3.0008
born	-0.22092	-4.229	0.000	-19.8	-6.2	0.2893
educ	-0.06170	-12.810	0.000	-6.0	-16.8	2.9741

Marriage and education seem to have the largest effects.

Listcoef with reverse option doesn't work after Poisson because we are now dealing with incidence rate ratios rather than odds ratios, so it doesn't make sense to report them. To compare the effect sizes between positive and negative effects, you can still calculate them, e.g., for education: .di exp(.06170*2.9741) 1.2014173

So the effect of marriage is still stronger than that of education.

Next, to continue interpretation of this model, we can examine predicted rates for various groups. For example, . prtab sex married, x(born=1)

poisson: Predicted rates for childs

				-		
res	ponden	mai	rried			
ts	sex	j ()	1		
	+	+ ·		-		
	male	1.276) 1.998	3		
	female	1.551	2.429	2		
				· _		
	5	sex r	married	sibs	born	educ
x=	1.55555	556 .4	5974499	3.6018215	1	13.358834

We can see that for an average native-born woman, the average number of children she has if she is single is 1.55 and if she is married 2.43. An average native born man has 1.27 children on average if he is single and approximately 2 children if he is married.

We can also examine how such predicted rates change per change of each independent variable.

. prchange poisson: Changes in Predicted Rate for childs matsize too small You have attempted to create a matrix with more than 40 rows or columns or to estimate a model with more than 40 variables plus ancillary parameters. You need to increase matsize using the set matsize command; see help matsize. r(908); We are attempting a complex calculation, need to allow Stata to operate larger matrices. . set matsize 800 Now we can do it: . prchange poisson: Changes in Predicted Rate for childs 0->1 -+1/2 -+sd/2 MargEfct min->max 0.3349 0.3313 0.2725 0.1662 0.3344 sex 0.7889 0.7748 0.3838 married 0.7889 0.7683 2.5712 0.0586 0.0660 0.1983 0.0660 sibs -0.3465 -0.4321 -0.3791 -0.1095 born -0.3784educ -2.7681 -0.2336 -0.1057 -0.3147 -0.1057exp(xb): 1.7127 sex married sibs born educ x= 1.55556 .459745 3.60182 1.09217 13.3588 .289315 2.97411 sd(x) = .496995 .498468 3.00084To make this more interpretable, let's on rely on means for dummies: . prchange, x(married=1 sex=2 born=1) poisson: Changes in Predicted Rate for childs min->max 0->1 -+1/2 -+sd/2 MargEfct 0.4750 0.4308 0.3544 0.4742 0.2358 sex 0.8781 0.8781 1.0989 married 0.5443 1.0898 3.6468 0.0831 0.0937 0.2812 sibs 0.0937 -0.1553 -0.4815 -0.6005 -0.5377 -0.5366 born -3.9261 -0.3314 -0.1499 -0.4464 educ -0.1499exp(xb): 2.4292 born sex married sibs educ 1 13.3588 x= 2 1 3.60182 sd(x) = .496995 .498468 3.00084 .289315 2.97411 So for an average native born married women, each additional sibling increases

so for an average native born married women, each additional sibling increases her number of children by .09, and each additional year of education decreases it by .15. For an average native-born woman, marriage increases her number of kids by .88. For an average married woman, being foreign-born decreases the number of children by 0.48. And the difference between the number of children of an average native-born married woman and an average native-born married man is .43 of a child.

In addition to predicted rates, we can also obtain predicted probabilities for each count for specific combinations of independent variables. For a single native born man:

. prvalue, x(married=0 sex=1 born=1) save poisson: Predictions for childs Predicted rate: 1.22 95% CI [1.15 1.29] Predicted probabilities: Pr(y=0|x):0.2953 Pr(y=1|x): 0.3602 Pr(y=2|x):0.2197 Pr(y=3|x): 0.0893 Pr(y=4|x): $0.0272 \quad \Pr(y=5|x):$ 0.0066 Pr(y=6|x): $0.0014 \quad \Pr(y=7|x):$ 0.0002 0.0000 Pr(y=9|x): Pr(y=8|x):0.0000 sex married sibs born educ age 1 0 3.6082663 1 13.354792 46.301756 x= For a single native-born woman, comparing the two groups side by side: . prvalue, x(married=0 sex=2 born=1) dif poisson: Change in Predictions for childs Predicted rate: 1.46 95% CI [1.39 , 1.53] Saved: 1.22 Difference: .242 Predicted probabilities: Saved Difference Current 0.2953 Pr(y=0|x):0.2317 -0.0636 0.3602 Pr(y=1|x):0.3388 -0.0214 Pr(y=2|x):0.2477 0.2197 0.0280 Pr(y=3|x):0.1207 0.0893 0.0314 Pr(y=4|x):0.0441 0.0272 0.0169 0.0066 0.0063 Pr(y=5|x):0.0129 Pr(y=6|x):0.0031 0.0014 0.0018 0.0002 0.0004 Pr(y=7|x):0.0007 Pr(y=8|x):0.0001 0.0000 0.0001 0.0000 Pr(y=9|x):0.0000 0.0000 married sibs born educ sex age 0 3.6082663 1 13.354792 46.301756 Current= 2 46.301756 3.6082663 1 13.354792 Saved= 1 0 0 Diff= 1 0 0 0 0 Women have lower probabilities of having no kids or 1 child and higher probabilities of having 2, 3 and 4 children. We can also graph predicted probabilities for each count. . prgen educ, x(sex=1 married=1 born=1) from(1) to(20) gen(edprm) n(20) poisson: Predicted values as educ varies from 1 to 20. sibs sex married born educ age 1 13.354792 46.301756 x= 1 1 3.6082663

. prgen educ, x(sex=2 married=1 born=1) from(1) to(20) gen(edprf) n(20) poisson: Predicted values as educ varies from 1 to 20. sex married sibs born educ age

x= 2 1 3.6082663 1 13.354792 46.301756

Note - it generated separate variables for each count. Let's label the first four.

. lab var edprmp0 "0 kids married native-born men"
. lab var edprmp1 "1 kid married native-born men"
. lab var edprmp2 "2 kids married native-born men"
. lab var edprmp3 "3 kids married native-born men"

```
lab var edprfp0 "0 kids married native-born women"
lab var edprfp1 "1 kid married native-born women"
lab var edprfp2 "2 kids married native-born women"
lab var edprfp3 "3 kids married native-born women"
```

Now we are ready to graph them:

. gr twoway connected edprmp0 edprfp0 edprfx, ylabel(0(.1).4) ytitle("Probability of Zero Kids")

. gr twoway connected edprmp1 edprfp1 edprfx, ylabel(0(.1).4) ytitle("Probability of One Child")

. gr twoway connected edprmp2 edprfp2 edprfx, ylabel(0(.1).4) ytitle("Probability of Two Kids")

. gr twoway connected edprmp3 edprfp3 edprfx, ylabel(0(.1).4) ytitle("Probability of Three Kids")

Can put these all together in one graph:

. gr twoway connected edprmp0 edprfp0 edprmp1 edprfp1 edprmp2 edprfp2 edprmp3 edprfp3 edprfx, ylabel(0(.1).4) ytitle("Probability of No. of Kids")

Diagnostics:

In terms of diagnostics, we can test for multicollinearity the same way we did with logistic models. To test for linearity and additivity, we can use Box-Tidwell test and mrunning and lowess using a log of the original count variable (add 1 to the count before logging it; otherwise zeros will become missing): . gen countlg=log(childs+1)

We can also look at robust standard errors to compare them to the regular ones. We can also get residuals and leverage statistics to assess the outliers; however, to do that, we need to estimate the same model using generalized linear models command - GLM. Unfortunately, predict after Poisson is very limited, but after GLM version of Poisson we can get a range of statistics.

. glm childs s		lbs born ed	uc, famil			
Generalized li	near models.			No.	of obs =	2745
Optimization	: ML			Resi	dual df =	2739
				Scal	e parameter =	1
Deviance	= 4279.43	37048		(1/d	f) Deviance =	1.562409
Pearson	= 3943.16	59972		(1/d	f) Pearson =	1.439639
Variance funct	ion: V(u) = u	1		[Poi	sson]	
Link function	: g(u) =]	ln(u)		[Log]	
				AIC	=	3.490352
Log likelihood	l = -4784.5	50787		BIC	=	-17406.7
		OIM				
childs	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
++						
sex	.195229	.0289993	6.73	0.000	.1383915	
married	.4486183	.0288777	15.54	0.000	.392019	.5052176
sibs	.0385556	.004219	9.14	0.000	.0302865	.0468246
born	2209195	.0522438	-4.23	0.000	3233154	1185235
educ	061697	.0048163	-12.81	0.000	0711369	0522572
_cons	.9547179	.1010692	9.45	0.000	.7566258	1.15281

- Here's what we can obtain by using predict after this (among other statistics): cooksd calculates Cook's distance, which measures the aggregate change in the estimated coefficients when each observation is left out of the estimation.
 - deviance calculates the deviance residuals. Deviance residuals are recommended by McCullagh and Nelder and by others as having the best properties for examining the goodness of fit of a GLM. They are approximately normally distributed if the model is correct. They may be plotted against fitted values or against a covariate to inspect the model's fit. Also see the pearson option below.
 - hat calculates the diagonals of the "hat" matrix as an analog to simple linear regression.
 - pearson calculates the Pearson residuals. Be aware that Pearson residuals often have markedly skewed distributions for non-normal family distributions. Also see the deviance option above.

----+ Options +-----

- standardized requests that the residual be multiplied by the factor (1-h)^[-1/2], where h is the diagonal of the hat matrix. This is done to account for the correlation between depvar and its predicted value.
 - studentized requests that the residual be multiplied by one over the square root of the estimated scale parameter.

We can use these the same way we have used them after logit, e.g.: predict p (option mu assumed; predicted mean childs) (19 missing values generated) predict rs, pearson standard (20 missing values generated) predict cooksd, cooksd (20 missing values generated) scatter p rs, xline(0) mlabel(id)

. scatter cooksd p, mlabel(id)

Would have a look at 1904, 921, 1643, 1646, 201.

Models Adjusted for Exposure:

Models for count data also allow controlling for so-called exposure - that is usually a variable that indicates how long there has been an opportunity to accumulate counts. E.g. an 20 y.o. and a 40 y.o. had different time available to have kids, and that will likely be reflected in their number of children. So we can control for the duration of reproductive age - that's the amount of exposure one had. Let's assume reproductive age to start at 15 and end at 45 (these numbers of course will vary individually, and it would be best to get a variable with individual data on that, but this is our best approximation): . gen reprage=age-15 (14 missing values generated) . replace reprage=30 if age>45 & age~=. (1312 real changes made) . poisson childs sex married sibs born educ, exposure(reprage)							
Poisson regres		ed sids bor	n eauc, e	-	reprage) r of obs =	2734	
POISSON LEGIES	551011					365.33	
				-	> chi2 =		
Log likelihood	d = -4474.7807	7			o R2 =		
CNIIds	Coef.	Sta. Err.	Z	P> z	[95% Conf.	Interval]	
sex	.1829962	.0291302	6.28	0.000	.1259021	.2400902	
married	.3223659	.0290622	11.09	0.000	.265405	.3793267	
sibs	.0249154	.0042745	5.83	0.000	.0165375	.0332933	
born	1354091		-2.59	0.010	2378651		
educ	0575382		-12.39			0484341	
_cons	-2.218856	.1006406	-22.05	0.000	-2.416108	-2.021604	
reprage	(exposure)						

What this actually does is: ln(reprage) is entered in the model, but its coefficient is constrained to 1. If we don't control for exposure, it's assumed that all cases have had the same exposure.

You can get the same result by using a log of exposure variable and specifying it using offset option: . gen repragelog=log(reprage) . poisson childs sex married sibs born educ, offset(repragelog)							
-		ed sids dor	n eauc,			0.504	
Poisson regres	sion				r of obs =	2734	
				LR ch	i2(5) =	365.33	
				Prob	> chi2 =	0.0000	
Log likelihood	= -4474.7807	7		Pseud	o R2 =	0.0392	
childs	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]	
sex	.1829962	.0291302	6.28	0.000	.1259021	.2400902	
married	.3223659	.0290622	11.09	0.000	.265405	.3793267	
sibs	.0249154	.0042745	5.83	0.000	.0165375	.0332933	
born	1354091	.0522745	-2.59	0.010	2378651	032953	
educ	0575382	.004645	-12.39	0.000	0666423	0484341	
cons	-2.218856	.1006406	-22.05	0.000	-2.416108	-2.021604	
repragelog	(offset)						
						•	

. prcounts expo, plot max(8)

(31 missing values generated)

. lab var expopreq "Exposure model"

. gr twoway connected poisobeq poispreq prmpreq expopreq poisval, ylabel(0 (.1) .3) ytitle("Probability of Count")

This model fits somewhat better but still has the same problems. Further, when we think that our measure of exposure is not a perfect measure of how much time one had to accumulate counts, we may just enter log of exposure variable it into the model without constraining the coefficient to 1: . poisson childs sex married sibs born educ repragelog

Poisson regres	ssion			Number	of obs	s =	2734
				LR chi	2(6)	=	1151.72
				Prob >	> chi2	=	0.0000
Log likelihood	d = -4473.9245	5		Pseudo	D R2	=	0.1140
childs	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
	+						
sex	.1835258	.0291282	6.30	0.000	.1264	356	.240616
married	.3266819	.0292507	11.17	0.000	.2693	3516	.3840121
sibs	.0254587	.0042934	5.93	0.000	.0170	438	.0338737

born	1396764	.0523749	-2.67	0.008	2423293	0370235
educ	0577855	.0046561	-12.41	0.000	0669113	0486597
repragelog	.9417878	.0441539	21.33	0.000	.8552478	1.028328
_cons	-2.028168	.1760539	-11.52	0.000	-2.373228	-1.683109
· · · · · · · · · · · · · · · · · · ·						

Here it has a coefficient not significantly different from 1 (the confidence interval includes 1), so reprage seems to be a good estimate of exposure time. If it would be significantly different from 1, and we would have substantive reasons to believe that our measure of exposure is imperfect, we might use this model instead of the one with exposure option or offset option.

When interpreting models with exposure, we cannot, unfortunately, directly use prtab, prgen, and prvalue as those show incidence rates (rates per unit of time) rather than total counts. We can, potentially, use them and multiply the values by average exposure values, but there is an easier way to get around that problem. As mentioned above, the way models with exposure are estimated is: the log of exposure variable is entered into the model, but its coefficient is constrained to 1. We could simulate that using constraints option - first, we specify that constraint #1 will mean repragelog coefficient should be 1, and then estimate the model adding repragelog and using constraint 1:

Poisson regres	lds sex marrie ssion	ed sibs bor 7	m educ r	Numbe Wald	g, constraints er of obs = chi2(5) = > chi2 =	(1) 2734 371.72 0.0000
childs	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
sex married sibs born educ repragelog _cons	.1829962 .3223659 .0249154 1354091 0575382 1 -2.218856	.0291302 .0290622 .0042745 .0522745 .004645 .1006406	6.28 11.09 5.83 -2.59 -12.39 -22.05	0.000 0.000 0.000 0.010 0.000 	.1259021 .265405 .0165375 2378651 0666423 -2.416108	.2400902 .3793267 .0332933 032953 0484341 -2.021604

Now prtab, prvalue, and prgen will work. E.g.: . prtab married sex born

poisson: Predicted rates for childs

	was	r born in respond	this countr ents sex	y and		
		- yes	no			
		-				
marrie	ea ma	le female	mare	remare		
	+					
	0 1.23	33 1.4810	1.0771	1,2934		
	1 1.70	25 2.0443	1.4869	1.7854		
	sex	married	sibs	born	educ	repragelog
						1 3 3
x= 1.5	548647	.46013168	3.6082663	1.0921726	13.354792	3.0594865

In terms of diagnostics and model fit for models with exposure, everything works the same except Box-Tidwell test which does not work with exposure or offset option, but does work with constraints:

. constraint 2 . constraint 2 . boxtid poiss Poisson regres	2 Irepr_1 =1 son childs ed		ried sibs	Numk	per of obs	= 2734
Log likelihood (1) [childs	d = -4472.269 s]Irepr1 =				1 chi2(8) 5 > chi2	
childs	Coef.	Std. Err.	. Z	P> z	[95% Con:	f. Interval]
Ieduc_pl Isibs1 Isibs_pl	.3208799	.1461062 .1250397	-0.00 2.57 0.01	0.997 0.010 0.994	2868611 .0758066	.5659532
Irepr1 Irepr_p1 Isex1 married Iborn1 cons	.182057 .3238347		6.23 11.06 -2.67	0.000 0.000 0.000 0.008	.2664346 2453614	1.74072 .2393366 .3812348 0374101 .3117275
educ - p1 2	.0582693 .0 1.067851 .2			Nonlin.	dev. 0.069	(P = 0.793)
sibs p1	.0255532 .0 .7165476 .3	 042942 622967	5.951 1.978	Nonlin.	dev. 0.742	(P = 0.389)
repragelog p1	1 .2074807 .4	0 305246		Nonlin.	dev. 4.167	(P = 0.041)
Deviance: 8944.406. For those statistics that are obtained using predict after GLM, we need to use offset option with GLM (exposure option doesn't work for that): . glm childs sex married sibs born educ, family(poisson) offset(repragelog) Generalized linear models Optimization : ML Deviance = 3675.111598 Pearson = 3353.513369 Variance function: V(u) = u Link function : g(u) = ln(u) Deviance : 8944.406. No. of obs = 2734 No. of obs = 2734 Residual df = 2728 Scale parameter = 1 (1/df) Deviance = 1.347182 (1/df) Pearson = 1.229294 [Poisson] Ling]						
Log likelihood	d = -4474.7	80694		AIC BIC		= 3.277821 = -17912.97
childs	 Coef.	OIM Std. Err	Z	P> z	[95% Con	f. Interval]
sex married sibs born educ _cons repragelog	.1829962 .3223659 .0249154 1354091 0575382 -2.218856 (offset)	.0291302 .0290622 .0042745 .0522745 .004645 .1006406	11.09 5.83 -2.59 -12.39	0.010	.265405 .0165375 2378651	.3793267 .0332933 032953 0484341

After that, we can obtain residuals etc.