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SC705: Advanced Statistics 

Instructor: Natasha Sarkisian 

Class notes: Non-continuous Dependent Variables 

 

So far we’ve only dealt with continuous dependent variables, but HLM allows us to estimate 

models when the dependent variables are categorical.  Your dependent variable can be 

dichotomous (0/1), categorical with multiple unordered categories, ordinal, or count variable.  In 

such cases, linear models are inappropriate as there are no restrictions on the predicted values of 

level-1 outcome, the level-1 random effect (i.e. level 1 residual) cannot be normally distributed, 

and cannot have homogenous variance (the variance depends on the predicted value).  Therefore, 

we need to use HGLM models for such variables. Like in non-hierarchical analysis, this is 

accomplished by specifying a link function that transforms the dependent variable so that the 

level-1 predicted values are constrained to be within a specific interval. Specifically, we use logit 

models for dichotomous variables, multinomial logit for categorical with unordered categories, 

ordered logit for ordinal variables, and Poisson models for count variables.  

 

The following is an example of analysis with a dichotomous dependent variable.  We’ll use 

THAIUGRP.MDM in Examples/Chapter 6.  These are data on 7,516 sixth graders nested within 

356 primary schools from a national survey of primary education in Thailand, conducted in 

1988.  The dependent variable of interest is the probability that a child will repeat a grade during 

the primary years (REP1).  The level-1 independent variables are whether a child attended pre-

primary education (PPED) and child’s gender (MALE).  The level-2 variable is mean SES of 

school (MSESC).  To specify that the dependent variable is binary, we go to the Basic Settings 

menu and select Bernoulli option. 
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The model specified for the fixed effects was: 

 ---------------------------------------------------- 

   Level-1                  Level-2 

   Coefficients             Predictors 

 ----------------------   --------------- 

         INTRCPT1, B0      INTRCPT2, G00    

$                             MSESC, G01    

       MALE slope, B1      INTRCPT2, G10    

$                             MSESC, G11    

       PPED slope, B2      INTRCPT2, G20    

$                             MSESC, G21    

'$' - This level-2 predictor has been centered around its grand mean. 

 

 Summary of the model specified (in equation format) 

 --------------------------------------------------- 

Level-1 Model 
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 Prob(Y=1|B) = P 

 log[P/(1-P)] = B0 + B1*(MALE) + B2*(PPED)  

Level-2 Model 

 B0 = G00 + G01*(MSESC) + U0 

 B1 = G10 + G11*(MSESC) + U1 

 B2 = G20 + G21*(MSESC) + U2 

 

Level-1 variance = 1/[P(1-P)] 

RESULTS FOR NON-LINEAR MODEL WITH THE LOGIT LINK FUNCTION: Unit-Specific Model 

(macro iteration 755) 

 

 Tau 

 INTRCPT1,B0      1.31543       0.06393      -0.21242  

     MALE,B1      0.06393       0.10023       0.04712  

     PPED,B2     -0.21242       0.04712       0.09011  

 

Tau (as correlations) 

 INTRCPT1,B0  1.000  0.176 -0.617 

     MALE,B1  0.176  1.000  0.496 

     PPED,B2 -0.617  0.496  1.000 

 

 ---------------------------------------------------- 

  Random level-1 coefficient   Reliability estimate 

 ---------------------------------------------------- 

  INTRCPT1, B0                        0.378 

      MALE, B1                        0.047 

      PPED, B2                        0.028 

 ---------------------------------------------------- 

 

Final estimation of fixed effects: (Unit-specific model) 

 ---------------------------------------------------------------------------- 

                                       Standard             Approx. 

    Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value 

 ---------------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -2.043050   0.095356   -21.425       354    0.000 

       MSESC, G01          -0.410774   0.249833    -1.644       354    0.101 

 For     MALE slope, B1 

    INTRCPT2, G10           0.465559   0.076924     6.052       354    0.000 

       MSESC, G11           0.270760   0.199846     1.355       354    0.176 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.532227   0.097716    -5.447       354    0.000 

       MSESC, G21          -0.044859   0.253619    -0.177       354    0.860 

 ---------------------------------------------------------------------------- 

 ---------------------------------------------------------------------- 

                                            Odds         Confidence 

    Fixed Effect         Coefficient        Ratio        Interval 

 ---------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -2.043050       0.129633     (0.107,0.156) 

       MSESC, G01          -0.410774       0.663137     (0.406,1.083) 

 For     MALE slope, B1 

    INTRCPT2, G10           0.465559       1.592905     (1.370,1.853) 

       MSESC, G11           0.270760       1.310960     (0.885,1.941) 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.532227       0.587296     (0.485,0.712) 

       MSESC, G21          -0.044859       0.956132     (0.581,1.573) 

---------------------------------------------------------------------- 

 The outcome variable is     REP1 

 Final estimation of fixed effects 

 (Unit-specific model with robust standard errors) 

 ---------------------------------------------------------------------------- 

                                       Standard             Approx. 
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    Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value 

 ---------------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -2.043050   0.094461   -21.628       354    0.000 

       MSESC, G01          -0.410774   0.255098    -1.610       354    0.108 

 For     MALE slope, B1 

    INTRCPT2, G10           0.465559   0.075695     6.150       354    0.000 

       MSESC, G11           0.270760   0.204300     1.325       354    0.186 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.532227   0.095718    -5.560       354    0.000 

       MSESC, G21          -0.044859   0.253801    -0.177       354    0.860 

 ---------------------------------------------------------------------------- 

 ---------------------------------------------------------------------- 

                                            Odds         Confidence 

    Fixed Effect         Coefficient        Ratio        Interval 

 ---------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -2.043050       0.129633     (0.108,0.156) 

       MSESC, G01          -0.410774       0.663137     (0.402,1.094) 

 For     MALE slope, B1 

    INTRCPT2, G10           0.465559       1.592905     (1.373,1.848) 

       MSESC, G11           0.270760       1.310960     (0.878,1.958) 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.532227       0.587296     (0.487,0.709) 

       MSESC, G21          -0.044859       0.956132     (0.581,1.574) 

 ---------------------------------------------------------------------- 

 Final estimation of variance components: 

 ----------------------------------------------------------------------------- 

 Random Effect           Standard      Variance     df    Chi-square  P-value 

                         Deviation     Component 

 ----------------------------------------------------------------------------- 

 INTRCPT1,       U0        1.14692       1.31543   237     423.83711    0.000 

     MALE slope, U1        0.31659       0.10023   237     213.85874    >.500 

     PPED slope, U2        0.30018       0.09011   237     166.92266    >.500 

 ----------------------------------------------------------------------------- 

 

Final estimation of fixed effects: (Population-average model) 

 ---------------------------------------------------------------------------- 

                                       Standard             Approx. 

    Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value 

 ---------------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -1.671706   0.082783   -20.194       354    0.000 

       MSESC, G01          -0.398163   0.221047    -1.801       354    0.072 

 For     MALE slope, B1 

    INTRCPT2, G10           0.426803   0.060136     7.097       354    0.000 

       MSESC, G11           0.248359   0.162132     1.532       354    0.126 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.481299   0.079160    -6.080       354    0.000 

       MSESC, G21          -0.000757   0.215165    -0.004       354    0.997 

 ---------------------------------------------------------------------------- 

 ---------------------------------------------------------------------- 

                                            Odds         Confidence 

    Fixed Effect         Coefficient        Ratio        Interval 

 ---------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -1.671706       0.187926     (0.160,0.221) 

       MSESC, G01          -0.398163       0.671553     (0.435,1.037) 

 For     MALE slope, B1 

    INTRCPT2, G10           0.426803       1.532350     (1.362,1.724) 

       MSESC, G11           0.248359       1.281920     (0.932,1.763) 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.481299       0.617980     (0.529,0.722) 
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       MSESC, G21          -0.000757       0.999243     (0.655,1.525) 

 ---------------------------------------------------------------------- 

 Final estimation of fixed effects 

 (Population-average model with robust standard errors) 

 ---------------------------------------------------------------------------- 

                                       Standard             Approx. 

    Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value 

 ---------------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -1.671706   0.059774   -27.967       354    0.000 

       MSESC, G01          -0.398163   0.170459    -2.336       354    0.020 

 For     MALE slope, B1 

    INTRCPT2, G10           0.426803   0.045573     9.365       354    0.000 

       MSESC, G11           0.248359   0.133309     1.863       354    0.063 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.481299   0.059564    -8.080       354    0.000 

       MSESC, G21          -0.000757   0.173800    -0.004       354    0.997 

 ---------------------------------------------------------------------------- 

 ---------------------------------------------------------------------- 

                                            Odds         Confidence 

    Fixed Effect         Coefficient        Ratio        Interval 

 ---------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -1.671706       0.187926     (0.167,0.211) 

       MSESC, G01          -0.398163       0.671553     (0.480,0.939) 

 For     MALE slope, B1 

    INTRCPT2, G10           0.426803       1.532350     (1.401,1.676) 

       MSESC, G11           0.248359       1.281920     (0.987,1.666) 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.481299       0.617980     (0.550,0.695) 

       MSESC, G21          -0.000757       0.999243     (0.710,1.406) 

 ---------------------------------------------------------------------- 

 

Interpreting fixed effects 

 

The interpretation of the fixed effects is very similar to the interpretation of the results of logistic 

regression—but be careful as we now have variables on multiple levels and can potentially have 

interactions across levels.  

 

Interpreting coefficients themselves allows us to discuss the direction and significance of effects, 

but not their size. To talk about the size, we use odds ratios.  

 

Odds are ratios of two probabilities – probability of a positive outcome and a probability of a 

negative outcome (e.g. probability of voting divided by a probability of not voting).  But since 

probabilities vary depending on values of X, such a ratio varies as well. What remains constant is 

the ratio of such odds – e.g. odds of repeating a grade for male child divided by odds of repeating 

a grade for a female child will be the same number regardless of the values of other variables on 

the model.  Similarly, the odds ratio for age can be a ratio of the odds of repeating a grade for 

someone who is 12 y.o. to the odds of an 11 y.o. child, or of a 17 y.o. to a 16 y.o. childs’s odds – 

these will be the same regardless of what age values you pick, as long as they are one year apart. 

 

Odds ratios are exponentiated logistic regression coefficients. They are sometimes called factor 

coefficients, because they are multiplicative coefficients.  Odds ratios are equal to 1 if there is no 

effect, smaller than 1 if the effect is negative and larger than 1 if it is positive.  So for example, 

the odds ratio for 1.53 for males indicates that the odds of repeating a grade for males are 1.53 
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times higher than for females –or we can say 53% higher. And the odds ratio of 0.67 for MSESC 

indicates that each additional unit increase in mean SES of school is associated in a 33% 

decrease ib a student’s odds of repeating a grade. To get percent change, we subtract 1 from the 

odds ratio, and then multiply the result by 100. 

 

Beware: if you would like to know what the increase would be per, say, 10 units increase in the 

independent variable – e.g. 10 years of age or education, you cannot simply multiple the odds 

ratio by 10! The coefficient, in fact, would be odds ratio to the power of 10.  Or alternatively, 

you could take the regular logit coefficient, multiply it by 10 and then exponentiate it.  

 

In addition, since odds ratios are multiplicative coefficients, when you want to interpret, for 

example, an interaction term, you would have to multiply rather than add the odds ratio numbers. 

Alternatively, you can add the numbers presented in the coefficient column and then 

exponentiate the result.  

 

In addition to using odds ratios, we can use predicted probabilities (P) to interpret our results. 

HLM does not calculate predicted probabilities but we can get them by calculating predicted 

logits (L) and then recalculating them into probabilities. Since L=log(odds)=log(P/(1-P)), then 

P=e
L
/(1+e

L
).  

 

As mentioned above, predicted logits L are available in the FITVAL variable, so you can easily 

generated predicted probabilities on the basis of that. It is more interesting for interpretation 

purposes, however, to calculate predicted probabilities for some hypothetical, strategically 

selected cases. For that, you have to calculate the logit of interest by hand by plugging values 

into the equation: 

L= 00 + 01*MSESC + 10*MALE + 11*MALE*MSESC+ 20*PPED + 21*PPED*MSESC 

 

For instance, if we want to calculate the predicted probabilities for males and females who did 

not attend pre-primary education and who are in a school with average SES, we calculate: 

L for males= 00 + 10*MALE  = -1.67+0.43 = -1.24 

L for females = 00 = -1.67 

 

Corresponding probabilities would be: 

P for males = exp(-1.24)/(1+exp(-1.24))= .22 

P for females = exp(-1.67)/(1+exp(-1.67)) = .16 

 

Such strategically calculated predicted probabilities are very useful for a more intuitive 

presentation of results. Note, however, that the differences between probabilities are not constant 

– e.g. if we looked at those who attended preprimary education (PPED=1), the difference 

between males and females would change.  

 

We can also calculate predicted probabilities for specific schools – we calculate linear predictors 

and add the corresponding level 2 residual. For example, we take female students with no 

preprimary education in schools 10103 and 10104. We would need to know MSESC and 

EBINTRCPT1 for their schools. Since we used MSESC as a mean-centered variable, we need to 
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get its values based on that; for that, we generate a mean-centered variable in our level 2 

residuals file: 
. sum MSESC 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

       MSESC |       356    .0078371    .3806623       -.77       1.49 

. gen  MSESCm = MSESC-.0078371 

 

School N MSESCm L for MALE=0  

PPED=0 

(L=00 + 01*MSESC) 

Predicted 

probability 

based on 

fixed effects 

only 

Random effect 

EBINTRCPT1 

Predicted 

probability 

based on 

fixed and 

random 

effects 

10103 17 .87 -1.67-0.4*.87=-2.018 .117 -.216 .097 

10104 29 .19 -1.67-0.4*.19=-1.746 .149 -1.228 .049 

 

Thus we see that school 10104 has advantages because of its mean SES, but its unique 

component suggests that it is much less efficient than school 10104 – in fact the unique 

component of school 10104 more than compensates for its economic disadvantage.  

 

Note that if we focused on male students, we’d have to take into account both the fixed effect 

(coefficient) for MALE and the value of random effect for the MALE slope which is stored in 

EBMALE.  

 

Interactions 

Note that interactions as a method to compare two or more groups can be problematic in logit 

models because the coefficients are scaled according to the differences in residual dispersion. So 

it is not as appropriate to rely on the significance test of the interaction term to establish whether 

some process differs by group. This is especially problematic for HLM as it heavily relies on the 

use of cross-level interactions. The best approach to establish whether the two groups do differ is 

to examine differences in predicted probabilities. You would have to do that in Stata or SPSS, 

and you would have to decide which values to assign to the rest of the variables in your model.  

 
. sum msesc 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

       msesc |      7516     .009674    .3759242       -.77       1.49 

 

. gen msescm=msesc-r(mean) 

 

. gen pred= -2.043050 - 0.410774*msescm +  0.465559*male + 0.270760*male*msescm- 

0.532227*0 - 0.044859*0*msescm 

 

. gen prob=exp(pred)/(1+exp(pred)) 

 

. separate prob, by(male) 

              storage  display     value 

variable name   type   format      label      variable label 

-------------------------------------------------------------------------------------- 

prob0           float  %9.0g                  prob, male == 0 

prob1           float  %9.0g                  prob, male == 1 
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. line prob0 prob1 msesc, sort 
.0

5
.1

.1
5

.2

-1 -.5 0 .5 1 1.5
msesc

prob, male == 0 prob, male == 1

 
. gen pred2= -2.043050 - 0.410774*msescm +  0.465559*male + 0.270760*male*msescm- 

0.532227*1 - 0.044859*1*msescm 

 

. gen prob2=exp(pred2)/(1+exp(pred2)) 

 

. separate prob2, by(male) 

              storage  display     value 

variable name   type   format      label      variable label 

-------------------------------------------------------------------------------------- 

prob20          float  %9.0g                  prob2, male == 0 

prob21          float  %9.0g                  prob2, male == 1 

 

. line prob20 prob21 msesc, sort 

 

.0
4

.0
6

.0
8

.1
.1

2

-1 -.5 0 .5 1 1.5
msesc

prob2, male == 0 prob2, male == 1

 
For more detail and more complex ways to do these comparisons, see Scott Long’s article at: 

http://www.indiana.edu/~jslsoc/files_research/groupdif/groupwithprobabilities/groups-with-

prob-2009-06-25.pdf 

http://www.indiana.edu/~jslsoc/files_research/groupdif/groupwithprobabilities/groups-with-prob-2009-06-25.pdf
http://www.indiana.edu/~jslsoc/files_research/groupdif/groupwithprobabilities/groups-with-prob-2009-06-25.pdf
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Variance components 

Note that the variance component does not contain an estimate of level 1 variance. That is 

because in logistic regression models, it is not possible to estimate both the coefficients and the 

error variance; therefore, in all logistic regression models, the error variance is always fixed to 

the same number which is 
2
/3 = 3.29. That rule also applies to multilevel models, but only to 

their level 1 residuals. Knowing this means that we can calculate the intraclass correlation 

coefficient or the proportion of variance explained. For both, we can follow the procedures 

described on pp.224-227 of the Snijders and Bosker chapter on dichotomous outcomes. For 

instance, the ICC would be calculated as 

  
And the proportion of variance explained can be calculated as  

 
Note that in addition to the level 2 intercept variance 0  and level 1 variance 

2
R = 3.29, we 

need to know the variance of fitted values 
2

F. That refers to the variance of linear predictions, 

which are the values that results if we multiply our coefficients by our variable values and add up 

these products. That is, we are talking about the predicted values of logits. To obtain the variance 

of fitted values, we can use level 1 residuals file and calculate the variance of the FITVAL 

variable containing the linear predictor values. Note that such R squared values are typically 

lower than values we are used to with OLS because 
2

R  is a fixed number.  

 

Unit-specific versus population-average models 

The distinction between unit-specific and population-average models emerges when we use 

nonlinear link models (HGLM). The unit-specific model presents coefficients for a hypothetical 

unit (group) where random effect is zero. The population-average model presents coefficients 

averaged out for the whole sample.  

 

Further, these two models make different assumptions about the underlying distribution of 

random effects and they are oriented towards different research aims.  The unit-specific models 

are more appropriate for describing how the effects of level 1 predictors vary across level 2 units. 

Population-average models, in contrast, give answers to population-average questions – that is, 

they are more appropriate for estimating predicted probabilities for the whole population. If we 

use a regression model to examine how preprimary education experience relates to the risk of 

class repetition in different schools, we are asking a unit-specific question.  If we want to know 

how the risk of repetition differs between those who do and do not have preprimary experience 

nationwide, we need a population-average estimate.   

 

Also note that population-average inferences are based on fewer assumptions than unit-specific 

inferences and are therefore more robust to erroneous assumptions about the random effects in 

the model.  In a way, unit-specific models are richer but more sensitive to model assumptions. 

 

In regular HLM, these are the same, but in HGLM they differ because nonlinear transformations, 

such as that from probability into log odds, mean that the distribution of predicted probabilities is 

not symmetric. The two estimates become rather similar when the fixed effect is close to 0 or the 

random component is close to 0.  
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Ordered logit and multinomial logit 

Much of what we discussed applies to ordered logit and multinomial logit models. Note that 

when specifying either ordered or multinomial logit, you will have to indicate the number of 

categories of your DV in HLM. To better understand interpretation of coefficients in ordered 

logit and multinomial logit, you should review my SC704 notes for each of these topics.  

 

Briefly, the odds ratios for ordered logit are cumulative odds of belonging to a certain category 

or lower versus belonging to one of the higher categories. For example, if our dependent variable 

is the level of agreement with some statement and the categories are agree=3, not sure=2, and 

disagree=1, and if the odds ratio for gender as a predictor of that agreement is 2.00, we can say 

that the odds of disagreeing rather than agreeing or being not sure are 2 times higher for women 

than for men. Similarly, the odds of disagreeing or being not sure are also twice as high for 

women than for men. What this means is that ologit assumes that these two odds ratios are 

essentially the same and thus uses the average. That is called the parallel slopes assumption. So 

we are assuming these two odds ratios are the same – if they differ significantly, the assumption 

is violated. 

 

Note that for ordered and multinomial logit, HLM does not generate level 1 residuals file at all.   

To get fitted values, we can plug in all the corresponding gammas into the equation  

L= 00 + 01*MSESC + 10*MALE + 11*MALE*MSESC+ 20*PPED + 21*PPED*MSESC 

and then calculate predicted logits (this is what FITVAL is for logit models) using Stata; e,g.,  

 
gen pred= -2.043050 - 0.410774*msescm +  0.465559*male + 0.270760*male*msescm - 

0.532227*pped - 0.044859*pped*msescm 

 

You would need to use mean-centered MSESC.   

 

Also, you should be aware that HLM does not provide diagnostic tools for testing such 

assumptions specific to ordered logit (parallel slopes assumption) or multinomial logit 

(independence of irrelevant alternatives), so in order to obtain a rough test of those, you might 

want to run your model in Stata and test these assumptions there.  

 

What we should also note that ordered logit coefficients in HLM go in the opposite direction to 

what ordered logit coefficients are in Stata: They show how the odds of being in a lower 

category change, while standard ordered logit coefficients show how the odds of being in a 

higher category change. Hence they would be the same number but with an opposite sign.  

 

Count data models 

 

HLM  also has the capability for count data models. Count variables are often treated as though 

they are continuous, and regular regression is used, but it can result in inefficient, inconsistent, 

and biased estimates.  Need to use models that are developed specifically for count data.  Poisson 

model is the most basic of them.   

 

Poisson distributions: 
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Characteristics of Poisson distribution:  

1. E(y) =  

2. The variance equals the mean: Var(y)=E(y)=   -- equidispersion.  In practice, the variance is 

often larger than : this is called overdispersion.  The main reason for overdispersion is 

heterogeneity – if there are different groups within data that have different means and all of them 

are actually equal to their variances, when you put all of these groups together, the resulting 

combination will have variance larger than the mean.  Therefore, we need to control for all those 

sources of heterogeneity.   

3.  As  increases, the probability of zeros decreases.  But for many count variables, there are 

more observed zeros than would be predicted from Poisson distribution  

4. As  increases, the Poisson distribution approximates normal. 

5. The assumption of independence of events – past outcomes don’t affect future outcomes. 

 

Luckily, in HLM we can estimate Poisson model, both with and without overdispersion. 

Unfortunately, HLM does not provide a significance test for the overdispersion parameter, but, 

you can compare the results with and without and if the findings are different, go with the 

overdispersion model.  

 

In addition, HLM models for count data also allow controlling for so-called exposure – that is 

usually a variable that indicates how long there has been an opportunity to accumulate counts. 

For example, if we have a count of missed classes from students in different schools, but 

different schools have different number of days in their school year, then some students have 

more opportunity to miss classes than others and we need to adjust for exposure – that is, rather 

than examine the total count, we would examine the number of missed classes per school day.  

 

Let’s examine an example of count data model in HLM and briefly discuss interpretation.  
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We will use another dataset based on the same national survey of primary education in Thailand 

in 1988; the file is THAIGRP.MDM in Chapter 6. These are data on 1097 children repeating a 

grade during their time at primary school  where REP1 is the number of grade retentions for each 

of four subpopulations within a specific school created based on combinations of predictors 

MALE (1= male, 0 = female) and preschool experience PPED (1= yes, 0= no).  So we have a 

maximum of four observations per school in this dataset. TRIAL is the number of students in a 

specific subpopulation within a specific school. Finally, MSESC is the average socio-economic 

status score.  

LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)

E(REP1| ) = 

Log[ ] = 

  =  
0
 + 

1
(MALE) + 

2
(PPED)

LEVEL 2 MODEL  (bold italic: grand-mean centering)

0
  =  

00
 + 

01
(MSESC) + u

0

1
  =  

10
 + 

11
(MSESC) + u

1

2
  =  

20
 + 

21
(MSESC) + u

2  
 

 

 

Distribution at Level-1: Poisson 

 

 Weighting Specification 

 ----------------------- 

                         Weight 

                         Variable 

            Weighting?   Name        Normalized? 

 Level 1        no        

 Level 2        no        

 Precision      no        

 

  The outcome variable is     REP1     

 

  The model specified for the fixed effects was: 

 ---------------------------------------------------- 

 

   Level-1                  Level-2 

   Coefficients             Predictors 

 ----------------------   --------------- 

         INTRCPT1, B0      INTRCPT2, G00    

$                             MSESC, G01    

       MALE slope, B1      INTRCPT2, G10    

$                             MSESC, G11    

       PPED slope, B2      INTRCPT2, G20    

$                             MSESC, G21    

 

'$' - This level-2 predictor has been centered around its grand mean. 

 

 The model specified for the covariance components was: 

 --------------------------------------------------------- 

         Tau dimensions 

               INTRCPT1 
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                   MALE slope 

                   PPED slope 

 

 Summary of the model specified (in equation format) 

 --------------------------------------------------- 

 

Level-1 Model 

 

 E(Y|B) = L 

 V(Y|B) = L 

 

 log[L] = B0 + B1*(MALE) + B2*(PPED)  

 

Level-2 Model 

 B0 = G00 + G01*(MSESC) + U0 

 B1 = G10 + G11*(MSESC) + U1 

 B2 = G20 + G21*(MSESC) + U2 

 

Level-1 variance = 1/L 

 

Note: The chi-square statistics reported above are based on only 239 of 356 

units that had sufficient data for computation.  Fixed effects and variance 

components are based on all the data. 

 

RESULTS FOR NON-LINEAR MODEL WITH THE LOG LINK FUNCTION: Unit-Specific Model 

(macro iteration 255) 

 

 Tau 

 INTRCPT1,B0      0.82061      -0.00557      -0.60413  

     MALE,B1     -0.00557       0.12963      -0.01266  

     PPED,B2     -0.60413      -0.01266       1.11767  

 

 

Tau (as correlations) 

 INTRCPT1,B0  1.000 -0.017 -0.631 

     MALE,B1 -0.017  1.000 -0.033 

     PPED,B2 -0.631 -0.033  1.000 

 

 ---------------------------------------------------- 

  Random level-1 coefficient   Reliability estimate 

 ---------------------------------------------------- 

  INTRCPT1, B0                        0.373 

      MALE, B1                        0.081 

      PPED, B2                        0.364 

 ---------------------------------------------------- 

Note: The reliability estimates reported above are based on only 239 of 356 

units that had sufficient data for computation.  Fixed effects and variance 

components are based on all the data. 

 

The value of the likelihood function at iteration 2 = -1.708667E+003 

 

 The outcome variable is     REP1 

 

 Final estimation of fixed effects: (Unit-specific model) 

 ---------------------------------------------------------------------------- 

                                       Standard             Approx. 

    Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value 

 ---------------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -0.398269   0.079559    -5.006       354    0.000 

       MSESC, G01          -0.657354   0.210343    -3.125       354    0.002 

 For     MALE slope, B1 

    INTRCPT2, G10           0.345354   0.068031     5.076       354    0.000 
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       MSESC, G11           0.154681   0.177184     0.873       354    0.384 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.258831   0.098413    -2.630       354    0.009 

       MSESC, G21           0.503835   0.261474     1.927       354    0.054 

 ---------------------------------------------------------------------------- 

 

 ---------------------------------------------------------------------- 

                                            Event Rate   Confidence 

    Fixed Effect         Coefficient        Ratio        Interval 

 ---------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -0.398269       0.671482     (0.574,0.785) 

       MSESC, G01          -0.657354       0.518221     (0.343,0.783) 

 For     MALE slope, B1 

    INTRCPT2, G10           0.345354       1.412490     (1.236,1.614) 

       MSESC, G11           0.154681       1.167286     (0.824,1.653) 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.258831       0.771954     (0.636,0.937) 

       MSESC, G21           0.503835       1.655056     (0.990,2.766) 

 ---------------------------------------------------------------------- 

 

 The outcome variable is     REP1 

 

 Final estimation of fixed effects 

 (Unit-specific model with robust standard errors) 

 ---------------------------------------------------------------------------- 

                                       Standard             Approx. 

    Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value 

 ---------------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -0.398269   0.079919    -4.983       354    0.000 

       MSESC, G01          -0.657354   0.227792    -2.886       354    0.005 

 For     MALE slope, B1 

    INTRCPT2, G10           0.345354   0.067476     5.118       354    0.000 

       MSESC, G11           0.154681   0.172418     0.897       354    0.371 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.258831   0.099240    -2.608       354    0.010 

       MSESC, G21           0.503835   0.273354     1.843       354    0.066 

 ---------------------------------------------------------------------------- 

 ---------------------------------------------------------------------- 

                                            Event Rate   Confidence 

    Fixed Effect         Coefficient        Ratio        Interval 

 ---------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -0.398269       0.671482     (0.574,0.786) 

       MSESC, G01          -0.657354       0.518221     (0.331,0.811) 

 For     MALE slope, B1 

    INTRCPT2, G10           0.345354       1.412490     (1.237,1.613) 

       MSESC, G11           0.154681       1.167286     (0.832,1.638) 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.258831       0.771954     (0.635,0.938) 

       MSESC, G21           0.503835       1.655056     (0.968,2.831) 

 ---------------------------------------------------------------------- 

 

 Final estimation of variance components: 

 ----------------------------------------------------------------------------- 

 Random Effect           Standard      Variance     df    Chi-square  P-value 

                         Deviation     Component 

 ----------------------------------------------------------------------------- 

 INTRCPT1,       U0        0.90588       0.82061   237     379.71671    0.000 

     MALE slope, U1        0.36004       0.12963   237     221.96128    >.500 

     PPED slope, U2        1.05720       1.11767   237     305.04990    0.002 

 ----------------------------------------------------------------------------- 
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Note: The chi-square statistics reported above are based on only 239 of 356 

units that had sufficient data for computation.  Fixed effects and variance 

components are based on all the data. 

 

 

RESULTS FOR NON-LINEAR MODEL WITH THE LOG LINK FUNCTION:  

Population Average Model 

 

The value of the likelihood function at iteration 2 = -1.843090E+003 

 

 The outcome variable is     REP1 

 

 Final estimation of fixed effects: (Population-average model) 

 ---------------------------------------------------------------------------- 

                                       Standard             Approx. 

    Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value 

 ---------------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -0.135548   0.072966    -1.858       354    0.064 

       MSESC, G01          -0.649303   0.200682    -3.235       354    0.002 

 For     MALE slope, B1 

    INTRCPT2, G10           0.395237   0.062971     6.277       354    0.000 

       MSESC, G11           0.159484   0.173161     0.921       354    0.358 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.307032   0.087766    -3.498       354    0.001 

       MSESC, G21           0.438226   0.240192     1.824       354    0.068 

 ---------------------------------------------------------------------------- 

 

 ---------------------------------------------------------------------- 

                                            Event Rate   Confidence 

    Fixed Effect         Coefficient        Ratio        Interval 

 ---------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -0.135548       0.873238     (0.757,1.008) 

       MSESC, G01          -0.649303       0.522410     (0.352,0.775) 

 For     MALE slope, B1 

    INTRCPT2, G10           0.395237       1.484736     (1.312,1.680) 

       MSESC, G11           0.159484       1.172905     (0.835,1.648) 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.307032       0.735627     (0.619,0.874) 

       MSESC, G21           0.438226       1.549955     (0.967,2.484) 

 ---------------------------------------------------------------------- 

 

 The outcome variable is     REP1 

 

 Final estimation of fixed effects 

 (Population-average model with robust standard errors) 

 ---------------------------------------------------------------------------- 

                                       Standard             Approx. 

    Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value 

 ---------------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -0.135548   0.072503    -1.870       354    0.062 

       MSESC, G01          -0.649303   0.240099    -2.704       354    0.008 

 For     MALE slope, B1 

    INTRCPT2, G10           0.395237   0.059300     6.665       354    0.000 

       MSESC, G11           0.159484   0.170298     0.936       354    0.350 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.307032   0.091403    -3.359       354    0.001 

       MSESC, G21           0.438226   0.284485     1.540       354    0.124 

 ---------------------------------------------------------------------------- 
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 ---------------------------------------------------------------------- 

                                            Event Rate   Confidence 

    Fixed Effect         Coefficient        Ratio        Interval 

 ---------------------------------------------------------------------- 

 For       INTRCPT1, B0 

    INTRCPT2, G00          -0.135548       0.873238     (0.757,1.007) 

       MSESC, G01          -0.649303       0.522410     (0.326,0.837) 

 For     MALE slope, B1 

    INTRCPT2, G10           0.395237       1.484736     (1.322,1.668) 

       MSESC, G11           0.159484       1.172905     (0.839,1.639) 

 For     PPED slope, B2 

    INTRCPT2, G20          -0.307032       0.735627     (0.615,0.880) 

       MSESC, G21           0.438226       1.549955     (0.886,2.710) 

 ---------------------------------------------------------------------- 

 

With regular coefficients, we can interpret sign and significance, but to interpret the size, we 

exponentiate the coefficients – these are called event rate ratios in HLM or sometimes they are 

also called incidence-rate ratios. They are also multiplicative coefficients, like odds ratios, and 

can be interpreted as percent change in the number of events.  

 

Overall, some of the same concerns apply here – those in terms of interactions (which are best 

assessed using predicted counts), in terms of variance. The level 1 residuals variance, which we 

assumed to be 3.29 in logit-based models, is assumed to be equal to 1 divided by the expected 

count, so you need to find the value of average predicted count by generating predicted values, 

exponentiating them, and calculating their mean; you should then divide 1 by that mean. You can 

use that number as level 1 variance in the formulas discussed above. (If your model has an 

overdispersion parameter, you should further multiply that value by sigma squared – that is, the 

value of the overdispersion parameter from your output.) 

 
 

 

 


